Evaluate
\frac{\left(5r-4\right)\left(r+1\right)}{\left(r-1\right)\left(3r-2\right)}
Differentiate w.r.t. r
\frac{2\left(-14r^{2}+22r-9\right)}{\left(\left(r-1\right)\left(3r-2\right)\right)^{2}}
Share
Copied to clipboard
\frac{5r\left(r-1\right)}{\left(r-1\right)\left(3r-2\right)}+\frac{2\left(3r-2\right)}{\left(r-1\right)\left(3r-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3r-2 and r-1 is \left(r-1\right)\left(3r-2\right). Multiply \frac{5r}{3r-2} times \frac{r-1}{r-1}. Multiply \frac{2}{r-1} times \frac{3r-2}{3r-2}.
\frac{5r\left(r-1\right)+2\left(3r-2\right)}{\left(r-1\right)\left(3r-2\right)}
Since \frac{5r\left(r-1\right)}{\left(r-1\right)\left(3r-2\right)} and \frac{2\left(3r-2\right)}{\left(r-1\right)\left(3r-2\right)} have the same denominator, add them by adding their numerators.
\frac{5r^{2}-5r+6r-4}{\left(r-1\right)\left(3r-2\right)}
Do the multiplications in 5r\left(r-1\right)+2\left(3r-2\right).
\frac{5r^{2}+r-4}{\left(r-1\right)\left(3r-2\right)}
Combine like terms in 5r^{2}-5r+6r-4.
\frac{5r^{2}+r-4}{3r^{2}-5r+2}
Expand \left(r-1\right)\left(3r-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}