Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9p^{2}q}{6y-15}}
Multiply \frac{5p}{6x+7} times \frac{98-72x^{2}}{2y-5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9qp^{2}}{3\left(2y-5\right)}}
Factor the expressions that are not already factored in \frac{9p^{2}q}{6y-15}.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{3qp^{2}}{2y-5}}
Cancel out 3 in both numerator and denominator.
\frac{5p\left(98-72x^{2}\right)\left(2y-5\right)}{\left(6x+7\right)\left(2y-5\right)\times 3qp^{2}}
Divide \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by \frac{3qp^{2}}{2y-5} by multiplying \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by the reciprocal of \frac{3qp^{2}}{2y-5}.
\frac{5\left(-72x^{2}+98\right)}{3pq\left(6x+7\right)}
Cancel out p\left(2y-5\right) in both numerator and denominator.
\frac{2\times 5\left(-6x-7\right)\left(6x-7\right)}{3pq\left(6x+7\right)}
Factor the expressions that are not already factored.
\frac{-2\times 5\left(6x-7\right)\left(6x+7\right)}{3pq\left(6x+7\right)}
Extract the negative sign in -7-6x.
\frac{-2\times 5\left(6x-7\right)}{3pq}
Cancel out 6x+7 in both numerator and denominator.
\frac{-60x+70}{3pq}
Expand the expression.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9p^{2}q}{6y-15}}
Multiply \frac{5p}{6x+7} times \frac{98-72x^{2}}{2y-5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9qp^{2}}{3\left(2y-5\right)}}
Factor the expressions that are not already factored in \frac{9p^{2}q}{6y-15}.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{3qp^{2}}{2y-5}}
Cancel out 3 in both numerator and denominator.
\frac{5p\left(98-72x^{2}\right)\left(2y-5\right)}{\left(6x+7\right)\left(2y-5\right)\times 3qp^{2}}
Divide \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by \frac{3qp^{2}}{2y-5} by multiplying \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by the reciprocal of \frac{3qp^{2}}{2y-5}.
\frac{5\left(-72x^{2}+98\right)}{3pq\left(6x+7\right)}
Cancel out p\left(2y-5\right) in both numerator and denominator.
\frac{2\times 5\left(-6x-7\right)\left(6x-7\right)}{3pq\left(6x+7\right)}
Factor the expressions that are not already factored.
\frac{-2\times 5\left(6x-7\right)\left(6x+7\right)}{3pq\left(6x+7\right)}
Extract the negative sign in -7-6x.
\frac{-2\times 5\left(6x-7\right)}{3pq}
Cancel out 6x+7 in both numerator and denominator.
\frac{-60x+70}{3pq}
Expand the expression.