Evaluate
-\frac{10\left(6x-7\right)}{3pq}
Expand
-\frac{10\left(6x-7\right)}{3pq}
Share
Copied to clipboard
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9p^{2}q}{6y-15}}
Multiply \frac{5p}{6x+7} times \frac{98-72x^{2}}{2y-5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9qp^{2}}{3\left(2y-5\right)}}
Factor the expressions that are not already factored in \frac{9p^{2}q}{6y-15}.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{3qp^{2}}{2y-5}}
Cancel out 3 in both numerator and denominator.
\frac{5p\left(98-72x^{2}\right)\left(2y-5\right)}{\left(6x+7\right)\left(2y-5\right)\times 3qp^{2}}
Divide \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by \frac{3qp^{2}}{2y-5} by multiplying \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by the reciprocal of \frac{3qp^{2}}{2y-5}.
\frac{5\left(-72x^{2}+98\right)}{3pq\left(6x+7\right)}
Cancel out p\left(2y-5\right) in both numerator and denominator.
\frac{2\times 5\left(-6x-7\right)\left(6x-7\right)}{3pq\left(6x+7\right)}
Factor the expressions that are not already factored.
\frac{-2\times 5\left(6x-7\right)\left(6x+7\right)}{3pq\left(6x+7\right)}
Extract the negative sign in -7-6x.
\frac{-2\times 5\left(6x-7\right)}{3pq}
Cancel out 6x+7 in both numerator and denominator.
\frac{-60x+70}{3pq}
Expand the expression.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9p^{2}q}{6y-15}}
Multiply \frac{5p}{6x+7} times \frac{98-72x^{2}}{2y-5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{9qp^{2}}{3\left(2y-5\right)}}
Factor the expressions that are not already factored in \frac{9p^{2}q}{6y-15}.
\frac{\frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)}}{\frac{3qp^{2}}{2y-5}}
Cancel out 3 in both numerator and denominator.
\frac{5p\left(98-72x^{2}\right)\left(2y-5\right)}{\left(6x+7\right)\left(2y-5\right)\times 3qp^{2}}
Divide \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by \frac{3qp^{2}}{2y-5} by multiplying \frac{5p\left(98-72x^{2}\right)}{\left(6x+7\right)\left(2y-5\right)} by the reciprocal of \frac{3qp^{2}}{2y-5}.
\frac{5\left(-72x^{2}+98\right)}{3pq\left(6x+7\right)}
Cancel out p\left(2y-5\right) in both numerator and denominator.
\frac{2\times 5\left(-6x-7\right)\left(6x-7\right)}{3pq\left(6x+7\right)}
Factor the expressions that are not already factored.
\frac{-2\times 5\left(6x-7\right)\left(6x+7\right)}{3pq\left(6x+7\right)}
Extract the negative sign in -7-6x.
\frac{-2\times 5\left(6x-7\right)}{3pq}
Cancel out 6x+7 in both numerator and denominator.
\frac{-60x+70}{3pq}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}