Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(5n^{3}\right)^{1}\times \frac{1}{3n^{3}}
Use the rules of exponents to simplify the expression.
5^{1}\left(n^{3}\right)^{1}\times \frac{1}{3}\times \frac{1}{n^{3}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
5^{1}\times \frac{1}{3}\left(n^{3}\right)^{1}\times \frac{1}{n^{3}}
Use the Commutative Property of Multiplication.
5^{1}\times \frac{1}{3}n^{3}n^{3\left(-1\right)}
To raise a power to another power, multiply the exponents.
5^{1}\times \frac{1}{3}n^{3}n^{-3}
Multiply 3 times -1.
5^{1}\times \frac{1}{3}n^{3-3}
To multiply powers of the same base, add their exponents.
5^{1}\times \frac{1}{3}n^{0}
Add the exponents 3 and -3.
5\times \frac{1}{3}n^{0}
Raise 5 to the power 1.
\frac{5}{3}n^{0}
Multiply 5 times \frac{1}{3}.
\frac{5}{3}\times 1
For any term t except 0, t^{0}=1.
\frac{5}{3}
For any term t, t\times 1=t and 1t=t.
\frac{5^{1}n^{3}}{3^{1}n^{3}}
Use the rules of exponents to simplify the expression.
\frac{5^{1}n^{3-3}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{5^{1}n^{0}}{3^{1}}
Subtract 3 from 3.
\frac{5^{1}}{3^{1}}
For any number a except 0, a^{0}=1.
\frac{5}{3}
Divide 5 by 3.