Solve for c
c\neq 0
\left(m_{20}x_{2}\neq 0\text{ and }m_{60}=\frac{3m_{20}x_{2}}{25m}\text{ and }m\neq 0\right)\text{ or }\left(x_{2}=0\text{ and }m_{60}=0\text{ and }m\neq 0\text{ and }m_{20}\neq 0\right)
Solve for m
\left\{\begin{matrix}m=\frac{3m_{20}x_{2}}{25m_{60}}\text{, }&m_{20}\neq 0\text{ and }x_{2}\neq 0\text{ and }m_{60}\neq 0\text{ and }c\neq 0\\m\neq 0\text{, }&x_{2}=0\text{ and }m_{60}=0\text{ and }m_{20}\neq 0\text{ and }c\neq 0\end{matrix}\right.
Share
Copied to clipboard
5\times 5m_{60}cm=3cm_{20}x_{2}
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 15cmm_{20}, the least common multiple of 3m_{20}cm,5m.
25m_{60}cm=3cm_{20}x_{2}
Multiply 5 and 5 to get 25.
25m_{60}cm-3cm_{20}x_{2}=0
Subtract 3cm_{20}x_{2} from both sides.
\left(25m_{60}m-3m_{20}x_{2}\right)c=0
Combine all terms containing c.
\left(25mm_{60}-3m_{20}x_{2}\right)c=0
The equation is in standard form.
c=0
Divide 0 by 25m_{60}m-3x_{2}m_{20}.
c\in \emptyset
Variable c cannot be equal to 0.
5\times 5m_{60}cm=3cm_{20}x_{2}
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 15cmm_{20}, the least common multiple of 3m_{20}cm,5m.
25m_{60}cm=3cm_{20}x_{2}
Multiply 5 and 5 to get 25.
25cm_{60}m=3cm_{20}x_{2}
The equation is in standard form.
\frac{25cm_{60}m}{25cm_{60}}=\frac{3cm_{20}x_{2}}{25cm_{60}}
Divide both sides by 25m_{60}c.
m=\frac{3cm_{20}x_{2}}{25cm_{60}}
Dividing by 25m_{60}c undoes the multiplication by 25m_{60}c.
m=\frac{3m_{20}x_{2}}{25m_{60}}
Divide 3cm_{20}x_{2} by 25m_{60}c.
m=\frac{3m_{20}x_{2}}{25m_{60}}\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}