Solve for m
m = \frac{\sqrt{4889} + 5}{8} \approx 9.365173053
m=\frac{5-\sqrt{4889}}{8}\approx -8.115173053
Share
Copied to clipboard
5m+304=4m^{2}
Multiply both sides of the equation by 4.
5m+304-4m^{2}=0
Subtract 4m^{2} from both sides.
-4m^{2}+5m+304=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-5±\sqrt{5^{2}-4\left(-4\right)\times 304}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 5 for b, and 304 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±\sqrt{25-4\left(-4\right)\times 304}}{2\left(-4\right)}
Square 5.
m=\frac{-5±\sqrt{25+16\times 304}}{2\left(-4\right)}
Multiply -4 times -4.
m=\frac{-5±\sqrt{25+4864}}{2\left(-4\right)}
Multiply 16 times 304.
m=\frac{-5±\sqrt{4889}}{2\left(-4\right)}
Add 25 to 4864.
m=\frac{-5±\sqrt{4889}}{-8}
Multiply 2 times -4.
m=\frac{\sqrt{4889}-5}{-8}
Now solve the equation m=\frac{-5±\sqrt{4889}}{-8} when ± is plus. Add -5 to \sqrt{4889}.
m=\frac{5-\sqrt{4889}}{8}
Divide -5+\sqrt{4889} by -8.
m=\frac{-\sqrt{4889}-5}{-8}
Now solve the equation m=\frac{-5±\sqrt{4889}}{-8} when ± is minus. Subtract \sqrt{4889} from -5.
m=\frac{\sqrt{4889}+5}{8}
Divide -5-\sqrt{4889} by -8.
m=\frac{5-\sqrt{4889}}{8} m=\frac{\sqrt{4889}+5}{8}
The equation is now solved.
5m+304=4m^{2}
Multiply both sides of the equation by 4.
5m+304-4m^{2}=0
Subtract 4m^{2} from both sides.
5m-4m^{2}=-304
Subtract 304 from both sides. Anything subtracted from zero gives its negation.
-4m^{2}+5m=-304
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4m^{2}+5m}{-4}=-\frac{304}{-4}
Divide both sides by -4.
m^{2}+\frac{5}{-4}m=-\frac{304}{-4}
Dividing by -4 undoes the multiplication by -4.
m^{2}-\frac{5}{4}m=-\frac{304}{-4}
Divide 5 by -4.
m^{2}-\frac{5}{4}m=76
Divide -304 by -4.
m^{2}-\frac{5}{4}m+\left(-\frac{5}{8}\right)^{2}=76+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{5}{4}m+\frac{25}{64}=76+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{5}{4}m+\frac{25}{64}=\frac{4889}{64}
Add 76 to \frac{25}{64}.
\left(m-\frac{5}{8}\right)^{2}=\frac{4889}{64}
Factor m^{2}-\frac{5}{4}m+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{8}\right)^{2}}=\sqrt{\frac{4889}{64}}
Take the square root of both sides of the equation.
m-\frac{5}{8}=\frac{\sqrt{4889}}{8} m-\frac{5}{8}=-\frac{\sqrt{4889}}{8}
Simplify.
m=\frac{\sqrt{4889}+5}{8} m=\frac{5-\sqrt{4889}}{8}
Add \frac{5}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}