Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5m+10}{\left(m-3\right)\left(m+1\right)}+\frac{4}{m-3}
Factor m^{2}-2m-3.
\frac{5m+10}{\left(m-3\right)\left(m+1\right)}+\frac{4\left(m+1\right)}{\left(m-3\right)\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-3\right)\left(m+1\right) and m-3 is \left(m-3\right)\left(m+1\right). Multiply \frac{4}{m-3} times \frac{m+1}{m+1}.
\frac{5m+10+4\left(m+1\right)}{\left(m-3\right)\left(m+1\right)}
Since \frac{5m+10}{\left(m-3\right)\left(m+1\right)} and \frac{4\left(m+1\right)}{\left(m-3\right)\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{5m+10+4m+4}{\left(m-3\right)\left(m+1\right)}
Do the multiplications in 5m+10+4\left(m+1\right).
\frac{9m+14}{\left(m-3\right)\left(m+1\right)}
Combine like terms in 5m+10+4m+4.
\frac{9m+14}{m^{2}-2m-3}
Expand \left(m-3\right)\left(m+1\right).
\frac{5m+10}{\left(m-3\right)\left(m+1\right)}+\frac{4}{m-3}
Factor m^{2}-2m-3.
\frac{5m+10}{\left(m-3\right)\left(m+1\right)}+\frac{4\left(m+1\right)}{\left(m-3\right)\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-3\right)\left(m+1\right) and m-3 is \left(m-3\right)\left(m+1\right). Multiply \frac{4}{m-3} times \frac{m+1}{m+1}.
\frac{5m+10+4\left(m+1\right)}{\left(m-3\right)\left(m+1\right)}
Since \frac{5m+10}{\left(m-3\right)\left(m+1\right)} and \frac{4\left(m+1\right)}{\left(m-3\right)\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{5m+10+4m+4}{\left(m-3\right)\left(m+1\right)}
Do the multiplications in 5m+10+4\left(m+1\right).
\frac{9m+14}{\left(m-3\right)\left(m+1\right)}
Combine like terms in 5m+10+4m+4.
\frac{9m+14}{m^{2}-2m-3}
Expand \left(m-3\right)\left(m+1\right).