Solve for k (complex solution)
k\in \mathrm{C}\setminus -\frac{1}{5},\frac{1}{5},0
Solve for k
k\in \mathrm{R}\setminus \frac{1}{5},-\frac{1}{5},0
Share
Copied to clipboard
5k^{2}-26k+5=\left(5k-1\right)\left(k-5\right)
Variable k cannot be equal to any of the values -\frac{1}{5},0,\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by k\left(5k-1\right)\left(5k+1\right), the least common multiple of 25k^{3}-k,k\left(5k+1\right).
5k^{2}-26k+5=5k^{2}-26k+5
Use the distributive property to multiply 5k-1 by k-5 and combine like terms.
5k^{2}-26k+5-5k^{2}=-26k+5
Subtract 5k^{2} from both sides.
-26k+5=-26k+5
Combine 5k^{2} and -5k^{2} to get 0.
-26k+5+26k=5
Add 26k to both sides.
5=5
Combine -26k and 26k to get 0.
\text{true}
Compare 5 and 5.
k\in \mathrm{C}
This is true for any k.
k\in \mathrm{C}\setminus -\frac{1}{5},0,\frac{1}{5}
Variable k cannot be equal to any of the values -\frac{1}{5},\frac{1}{5},0.
5k^{2}-26k+5=\left(5k-1\right)\left(k-5\right)
Variable k cannot be equal to any of the values -\frac{1}{5},0,\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by k\left(5k-1\right)\left(5k+1\right), the least common multiple of 25k^{3}-k,k\left(5k+1\right).
5k^{2}-26k+5=5k^{2}-26k+5
Use the distributive property to multiply 5k-1 by k-5 and combine like terms.
5k^{2}-26k+5-5k^{2}=-26k+5
Subtract 5k^{2} from both sides.
-26k+5=-26k+5
Combine 5k^{2} and -5k^{2} to get 0.
-26k+5+26k=5
Add 26k to both sides.
5=5
Combine -26k and 26k to get 0.
\text{true}
Compare 5 and 5.
k\in \mathrm{R}
This is true for any k.
k\in \mathrm{R}\setminus -\frac{1}{5},0,\frac{1}{5}
Variable k cannot be equal to any of the values -\frac{1}{5},\frac{1}{5},0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}