Solve for g (complex solution)
\left\{\begin{matrix}g=0\text{, }&m\neq 0\text{ and }w\neq 0\\g\in \mathrm{C}\text{, }&m=\frac{85}{w}\text{ and }w\neq 0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=0\text{, }&m\neq 0\text{ and }w\neq 0\\g\in \mathrm{R}\text{, }&m=\frac{85}{w}\text{ and }w\neq 0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{85}{w}\text{, }&w\neq 0\\m\neq 0\text{, }&g=0\text{ and }w\neq 0\end{matrix}\right.
Share
Copied to clipboard
17\times 5g=mwg
Multiply both sides of the equation by 17mw, the least common multiple of mw,17.
85g=mwg
Multiply 17 and 5 to get 85.
85g-mwg=0
Subtract mwg from both sides.
-gmw+85g=0
Reorder the terms.
\left(-mw+85\right)g=0
Combine all terms containing g.
\left(85-mw\right)g=0
The equation is in standard form.
g=0
Divide 0 by 85-wm.
17\times 5g=mwg
Multiply both sides of the equation by 17mw, the least common multiple of mw,17.
85g=mwg
Multiply 17 and 5 to get 85.
85g-mwg=0
Subtract mwg from both sides.
-gmw+85g=0
Reorder the terms.
\left(-mw+85\right)g=0
Combine all terms containing g.
\left(85-mw\right)g=0
The equation is in standard form.
g=0
Divide 0 by 85-wm.
17\times 5g=mwg
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 17mw, the least common multiple of mw,17.
85g=mwg
Multiply 17 and 5 to get 85.
mwg=85g
Swap sides so that all variable terms are on the left hand side.
gwm=85g
The equation is in standard form.
\frac{gwm}{gw}=\frac{85g}{gw}
Divide both sides by wg.
m=\frac{85g}{gw}
Dividing by wg undoes the multiplication by wg.
m=\frac{85}{w}
Divide 85g by wg.
m=\frac{85}{w}\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}