Solve for x
x=\frac{2e}{5}\approx 1.087312731
Graph
Share
Copied to clipboard
8\times 5e=x\times 100
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x, the least common multiple of x,8.
40e=x\times 100
Multiply 8 and 5 to get 40.
x\times 100=40e
Swap sides so that all variable terms are on the left hand side.
100x=40e
The equation is in standard form.
\frac{100x}{100}=\frac{40e}{100}
Divide both sides by 100.
x=\frac{40e}{100}
Dividing by 100 undoes the multiplication by 100.
x=\frac{2e}{5}
Divide 40e by 100.
x=\frac{2e}{5}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}