Solve for d
d=-\frac{60}{143}\approx -0.41958042
Share
Copied to clipboard
2\times 5d-36=153d+24
Multiply both sides of the equation by 6, the least common multiple of 3,2.
10d-36=153d+24
Multiply 2 and 5 to get 10.
10d-36-153d=24
Subtract 153d from both sides.
-143d-36=24
Combine 10d and -153d to get -143d.
-143d=24+36
Add 36 to both sides.
-143d=60
Add 24 and 36 to get 60.
d=\frac{60}{-143}
Divide both sides by -143.
d=-\frac{60}{143}
Fraction \frac{60}{-143} can be rewritten as -\frac{60}{143} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}