Evaluate
\frac{151}{b^{4}}
Differentiate w.r.t. b
-\frac{604}{b^{5}}
Share
Copied to clipboard
\frac{5b^{2}\times \frac{151}{b^{2}}}{5b^{2}b^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 3 to get 2.
\frac{5b^{2}\times \frac{151}{b^{2}}}{5b^{4}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\frac{5\times 151}{b^{2}}b^{2}}{5b^{4}}
Express 5\times \frac{151}{b^{2}} as a single fraction.
\frac{\frac{755}{b^{2}}b^{2}}{5b^{4}}
Multiply 5 and 151 to get 755.
\frac{755}{5b^{4}}
Cancel out b^{2} and b^{2}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{5\times \frac{151}{b^{2}}}{5\times \frac{b^{3}}{b}}b^{2-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{151}{b^{4}}b^{0})
Do the arithmetic.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{151}{b^{4}})
For any number a except 0, a^{0}=1.
0
The derivative of a constant term is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}