Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

5a-a^{2}=8a^{2}-16a-24
Multiply both sides of the equation by 4.
5a-a^{2}-8a^{2}=-16a-24
Subtract 8a^{2} from both sides.
5a-9a^{2}=-16a-24
Combine -a^{2} and -8a^{2} to get -9a^{2}.
5a-9a^{2}+16a=-24
Add 16a to both sides.
21a-9a^{2}=-24
Combine 5a and 16a to get 21a.
21a-9a^{2}+24=0
Add 24 to both sides.
-9a^{2}+21a+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-21±\sqrt{21^{2}-4\left(-9\right)\times 24}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 21 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-21±\sqrt{441-4\left(-9\right)\times 24}}{2\left(-9\right)}
Square 21.
a=\frac{-21±\sqrt{441+36\times 24}}{2\left(-9\right)}
Multiply -4 times -9.
a=\frac{-21±\sqrt{441+864}}{2\left(-9\right)}
Multiply 36 times 24.
a=\frac{-21±\sqrt{1305}}{2\left(-9\right)}
Add 441 to 864.
a=\frac{-21±3\sqrt{145}}{2\left(-9\right)}
Take the square root of 1305.
a=\frac{-21±3\sqrt{145}}{-18}
Multiply 2 times -9.
a=\frac{3\sqrt{145}-21}{-18}
Now solve the equation a=\frac{-21±3\sqrt{145}}{-18} when ± is plus. Add -21 to 3\sqrt{145}.
a=\frac{7-\sqrt{145}}{6}
Divide -21+3\sqrt{145} by -18.
a=\frac{-3\sqrt{145}-21}{-18}
Now solve the equation a=\frac{-21±3\sqrt{145}}{-18} when ± is minus. Subtract 3\sqrt{145} from -21.
a=\frac{\sqrt{145}+7}{6}
Divide -21-3\sqrt{145} by -18.
a=\frac{7-\sqrt{145}}{6} a=\frac{\sqrt{145}+7}{6}
The equation is now solved.
5a-a^{2}=8a^{2}-16a-24
Multiply both sides of the equation by 4.
5a-a^{2}-8a^{2}=-16a-24
Subtract 8a^{2} from both sides.
5a-9a^{2}=-16a-24
Combine -a^{2} and -8a^{2} to get -9a^{2}.
5a-9a^{2}+16a=-24
Add 16a to both sides.
21a-9a^{2}=-24
Combine 5a and 16a to get 21a.
-9a^{2}+21a=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9a^{2}+21a}{-9}=-\frac{24}{-9}
Divide both sides by -9.
a^{2}+\frac{21}{-9}a=-\frac{24}{-9}
Dividing by -9 undoes the multiplication by -9.
a^{2}-\frac{7}{3}a=-\frac{24}{-9}
Reduce the fraction \frac{21}{-9} to lowest terms by extracting and canceling out 3.
a^{2}-\frac{7}{3}a=\frac{8}{3}
Reduce the fraction \frac{-24}{-9} to lowest terms by extracting and canceling out 3.
a^{2}-\frac{7}{3}a+\left(-\frac{7}{6}\right)^{2}=\frac{8}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{7}{3}a+\frac{49}{36}=\frac{8}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{7}{3}a+\frac{49}{36}=\frac{145}{36}
Add \frac{8}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{7}{6}\right)^{2}=\frac{145}{36}
Factor a^{2}-\frac{7}{3}a+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{7}{6}\right)^{2}}=\sqrt{\frac{145}{36}}
Take the square root of both sides of the equation.
a-\frac{7}{6}=\frac{\sqrt{145}}{6} a-\frac{7}{6}=-\frac{\sqrt{145}}{6}
Simplify.
a=\frac{\sqrt{145}+7}{6} a=\frac{7-\sqrt{145}}{6}
Add \frac{7}{6} to both sides of the equation.