Solve for a (complex solution)
a\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Share
Copied to clipboard
2\left(5a-1\right)-3\left(3a-1\right)=1\left(a+1\right)
Multiply both sides of the equation by 12, the least common multiple of 6,4,12.
10a-2-3\left(3a-1\right)=1\left(a+1\right)
Use the distributive property to multiply 2 by 5a-1.
10a-2-9a+3=1\left(a+1\right)
Use the distributive property to multiply -3 by 3a-1.
a-2+3=1\left(a+1\right)
Combine 10a and -9a to get a.
a+1=1\left(a+1\right)
Add -2 and 3 to get 1.
a+1=a+1
Use the distributive property to multiply 1 by a+1.
a+1-a=1
Subtract a from both sides.
1=1
Combine a and -a to get 0.
\text{true}
Compare 1 and 1.
a\in \mathrm{C}
This is true for any a.
2\left(5a-1\right)-3\left(3a-1\right)=1\left(a+1\right)
Multiply both sides of the equation by 12, the least common multiple of 6,4,12.
10a-2-3\left(3a-1\right)=1\left(a+1\right)
Use the distributive property to multiply 2 by 5a-1.
10a-2-9a+3=1\left(a+1\right)
Use the distributive property to multiply -3 by 3a-1.
a-2+3=1\left(a+1\right)
Combine 10a and -9a to get a.
a+1=1\left(a+1\right)
Add -2 and 3 to get 1.
a+1=a+1
Use the distributive property to multiply 1 by a+1.
a+1-a=1
Subtract a from both sides.
1=1
Combine a and -a to get 0.
\text{true}
Compare 1 and 1.
a\in \mathrm{R}
This is true for any a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}