Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5a}{a-9}+\frac{a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Factor a^{2}-12a+27.
\frac{5a\left(a-3\right)}{\left(a-9\right)\left(a-3\right)}+\frac{a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-9 and \left(a-9\right)\left(a-3\right) is \left(a-9\right)\left(a-3\right). Multiply \frac{5a}{a-9} times \frac{a-3}{a-3}.
\frac{5a\left(a-3\right)+a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Since \frac{5a\left(a-3\right)}{\left(a-9\right)\left(a-3\right)} and \frac{a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)} have the same denominator, add them by adding their numerators.
\frac{5a^{2}-15a+a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Do the multiplications in 5a\left(a-3\right)+a^{2}-2a+1.
\frac{6a^{2}-17a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Combine like terms in 5a^{2}-15a+a^{2}-2a+1.
\frac{6a^{2}-17a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a\left(a-9\right)}{\left(a-9\right)\left(a-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-9\right)\left(a-3\right) and a-3 is \left(a-9\right)\left(a-3\right). Multiply \frac{6a}{a-3} times \frac{a-9}{a-9}.
\frac{6a^{2}-17a+1-6a\left(a-9\right)}{\left(a-9\right)\left(a-3\right)}
Since \frac{6a^{2}-17a+1}{\left(a-9\right)\left(a-3\right)} and \frac{6a\left(a-9\right)}{\left(a-9\right)\left(a-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6a^{2}-17a+1-6a^{2}+54a}{\left(a-9\right)\left(a-3\right)}
Do the multiplications in 6a^{2}-17a+1-6a\left(a-9\right).
\frac{37a+1}{\left(a-9\right)\left(a-3\right)}
Combine like terms in 6a^{2}-17a+1-6a^{2}+54a.
\frac{37a+1}{a^{2}-12a+27}
Expand \left(a-9\right)\left(a-3\right).
\frac{5a}{a-9}+\frac{a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Factor a^{2}-12a+27.
\frac{5a\left(a-3\right)}{\left(a-9\right)\left(a-3\right)}+\frac{a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-9 and \left(a-9\right)\left(a-3\right) is \left(a-9\right)\left(a-3\right). Multiply \frac{5a}{a-9} times \frac{a-3}{a-3}.
\frac{5a\left(a-3\right)+a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Since \frac{5a\left(a-3\right)}{\left(a-9\right)\left(a-3\right)} and \frac{a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)} have the same denominator, add them by adding their numerators.
\frac{5a^{2}-15a+a^{2}-2a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Do the multiplications in 5a\left(a-3\right)+a^{2}-2a+1.
\frac{6a^{2}-17a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a}{a-3}
Combine like terms in 5a^{2}-15a+a^{2}-2a+1.
\frac{6a^{2}-17a+1}{\left(a-9\right)\left(a-3\right)}-\frac{6a\left(a-9\right)}{\left(a-9\right)\left(a-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-9\right)\left(a-3\right) and a-3 is \left(a-9\right)\left(a-3\right). Multiply \frac{6a}{a-3} times \frac{a-9}{a-9}.
\frac{6a^{2}-17a+1-6a\left(a-9\right)}{\left(a-9\right)\left(a-3\right)}
Since \frac{6a^{2}-17a+1}{\left(a-9\right)\left(a-3\right)} and \frac{6a\left(a-9\right)}{\left(a-9\right)\left(a-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6a^{2}-17a+1-6a^{2}+54a}{\left(a-9\right)\left(a-3\right)}
Do the multiplications in 6a^{2}-17a+1-6a\left(a-9\right).
\frac{37a+1}{\left(a-9\right)\left(a-3\right)}
Combine like terms in 6a^{2}-17a+1-6a^{2}+54a.
\frac{37a+1}{a^{2}-12a+27}
Expand \left(a-9\right)\left(a-3\right).