Solve for a
a=15
a=0
Share
Copied to clipboard
\left(a+30\right)\times 5a=\left(a+10\right)\times 9a
Variable a cannot be equal to any of the values -30,-10 since division by zero is not defined. Multiply both sides of the equation by \left(a+10\right)\left(a+30\right), the least common multiple of 10+a,30+a.
\left(5a+150\right)a=\left(a+10\right)\times 9a
Use the distributive property to multiply a+30 by 5.
5a^{2}+150a=\left(a+10\right)\times 9a
Use the distributive property to multiply 5a+150 by a.
5a^{2}+150a=\left(9a+90\right)a
Use the distributive property to multiply a+10 by 9.
5a^{2}+150a=9a^{2}+90a
Use the distributive property to multiply 9a+90 by a.
5a^{2}+150a-9a^{2}=90a
Subtract 9a^{2} from both sides.
-4a^{2}+150a=90a
Combine 5a^{2} and -9a^{2} to get -4a^{2}.
-4a^{2}+150a-90a=0
Subtract 90a from both sides.
-4a^{2}+60a=0
Combine 150a and -90a to get 60a.
a\left(-4a+60\right)=0
Factor out a.
a=0 a=15
To find equation solutions, solve a=0 and -4a+60=0.
\left(a+30\right)\times 5a=\left(a+10\right)\times 9a
Variable a cannot be equal to any of the values -30,-10 since division by zero is not defined. Multiply both sides of the equation by \left(a+10\right)\left(a+30\right), the least common multiple of 10+a,30+a.
\left(5a+150\right)a=\left(a+10\right)\times 9a
Use the distributive property to multiply a+30 by 5.
5a^{2}+150a=\left(a+10\right)\times 9a
Use the distributive property to multiply 5a+150 by a.
5a^{2}+150a=\left(9a+90\right)a
Use the distributive property to multiply a+10 by 9.
5a^{2}+150a=9a^{2}+90a
Use the distributive property to multiply 9a+90 by a.
5a^{2}+150a-9a^{2}=90a
Subtract 9a^{2} from both sides.
-4a^{2}+150a=90a
Combine 5a^{2} and -9a^{2} to get -4a^{2}.
-4a^{2}+150a-90a=0
Subtract 90a from both sides.
-4a^{2}+60a=0
Combine 150a and -90a to get 60a.
a=\frac{-60±\sqrt{60^{2}}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 60 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-60±60}{2\left(-4\right)}
Take the square root of 60^{2}.
a=\frac{-60±60}{-8}
Multiply 2 times -4.
a=\frac{0}{-8}
Now solve the equation a=\frac{-60±60}{-8} when ± is plus. Add -60 to 60.
a=0
Divide 0 by -8.
a=-\frac{120}{-8}
Now solve the equation a=\frac{-60±60}{-8} when ± is minus. Subtract 60 from -60.
a=15
Divide -120 by -8.
a=0 a=15
The equation is now solved.
\left(a+30\right)\times 5a=\left(a+10\right)\times 9a
Variable a cannot be equal to any of the values -30,-10 since division by zero is not defined. Multiply both sides of the equation by \left(a+10\right)\left(a+30\right), the least common multiple of 10+a,30+a.
\left(5a+150\right)a=\left(a+10\right)\times 9a
Use the distributive property to multiply a+30 by 5.
5a^{2}+150a=\left(a+10\right)\times 9a
Use the distributive property to multiply 5a+150 by a.
5a^{2}+150a=\left(9a+90\right)a
Use the distributive property to multiply a+10 by 9.
5a^{2}+150a=9a^{2}+90a
Use the distributive property to multiply 9a+90 by a.
5a^{2}+150a-9a^{2}=90a
Subtract 9a^{2} from both sides.
-4a^{2}+150a=90a
Combine 5a^{2} and -9a^{2} to get -4a^{2}.
-4a^{2}+150a-90a=0
Subtract 90a from both sides.
-4a^{2}+60a=0
Combine 150a and -90a to get 60a.
\frac{-4a^{2}+60a}{-4}=\frac{0}{-4}
Divide both sides by -4.
a^{2}+\frac{60}{-4}a=\frac{0}{-4}
Dividing by -4 undoes the multiplication by -4.
a^{2}-15a=\frac{0}{-4}
Divide 60 by -4.
a^{2}-15a=0
Divide 0 by -4.
a^{2}-15a+\left(-\frac{15}{2}\right)^{2}=\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-15a+\frac{225}{4}=\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
\left(a-\frac{15}{2}\right)^{2}=\frac{225}{4}
Factor a^{2}-15a+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
a-\frac{15}{2}=\frac{15}{2} a-\frac{15}{2}=-\frac{15}{2}
Simplify.
a=15 a=0
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}