Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{5a+12a+4}{a^{4}-16}}{\frac{2a^{3}-2a}{a^{2}-2a}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(5a+12a+4\right)\left(a^{2}-2a\right)}{\left(a^{4}-16\right)\left(2a^{3}-2a\right)}
Divide \frac{5a+12a+4}{a^{4}-16} by \frac{2a^{3}-2a}{a^{2}-2a} by multiplying \frac{5a+12a+4}{a^{4}-16} by the reciprocal of \frac{2a^{3}-2a}{a^{2}-2a}.
\frac{\left(17a+4\right)\left(a^{2}-2a\right)}{\left(a^{4}-16\right)\left(2a^{3}-2a\right)}
Combine 5a and 12a to get 17a.
\frac{a\left(a-2\right)\left(17a+4\right)}{2a\left(a-2\right)\left(a-1\right)\left(a+1\right)\left(a+2\right)\left(a^{2}+4\right)}
Factor the expressions that are not already factored.
\frac{17a+4}{2\left(a-1\right)\left(a+1\right)\left(a+2\right)\left(a^{2}+4\right)}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{17a+4}{2a^{5}+4a^{4}+6a^{3}+12a^{2}-8a-16}
Expand the expression.
\frac{\frac{5a+12a+4}{a^{4}-16}}{\frac{2a^{3}-2a}{a^{2}-2a}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(5a+12a+4\right)\left(a^{2}-2a\right)}{\left(a^{4}-16\right)\left(2a^{3}-2a\right)}
Divide \frac{5a+12a+4}{a^{4}-16} by \frac{2a^{3}-2a}{a^{2}-2a} by multiplying \frac{5a+12a+4}{a^{4}-16} by the reciprocal of \frac{2a^{3}-2a}{a^{2}-2a}.
\frac{\left(17a+4\right)\left(a^{2}-2a\right)}{\left(a^{4}-16\right)\left(2a^{3}-2a\right)}
Combine 5a and 12a to get 17a.
\frac{a\left(a-2\right)\left(17a+4\right)}{2a\left(a-2\right)\left(a-1\right)\left(a+1\right)\left(a+2\right)\left(a^{2}+4\right)}
Factor the expressions that are not already factored.
\frac{17a+4}{2\left(a-1\right)\left(a+1\right)\left(a+2\right)\left(a^{2}+4\right)}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{17a+4}{2a^{5}+4a^{4}+6a^{3}+12a^{2}-8a-16}
Expand the expression.