Solve for D
D=2\sqrt{17}\approx 8.246211251
D=-2\sqrt{17}\approx -8.246211251
Share
Copied to clipboard
5D^{2}+28=368
Multiply both sides of the equation by 4.
5D^{2}=368-28
Subtract 28 from both sides.
5D^{2}=340
Subtract 28 from 368 to get 340.
D^{2}=\frac{340}{5}
Divide both sides by 5.
D^{2}=68
Divide 340 by 5 to get 68.
D=2\sqrt{17} D=-2\sqrt{17}
Take the square root of both sides of the equation.
5D^{2}+28=368
Multiply both sides of the equation by 4.
5D^{2}+28-368=0
Subtract 368 from both sides.
5D^{2}-340=0
Subtract 368 from 28 to get -340.
D=\frac{0±\sqrt{0^{2}-4\times 5\left(-340\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -340 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{0±\sqrt{-4\times 5\left(-340\right)}}{2\times 5}
Square 0.
D=\frac{0±\sqrt{-20\left(-340\right)}}{2\times 5}
Multiply -4 times 5.
D=\frac{0±\sqrt{6800}}{2\times 5}
Multiply -20 times -340.
D=\frac{0±20\sqrt{17}}{2\times 5}
Take the square root of 6800.
D=\frac{0±20\sqrt{17}}{10}
Multiply 2 times 5.
D=2\sqrt{17}
Now solve the equation D=\frac{0±20\sqrt{17}}{10} when ± is plus.
D=-2\sqrt{17}
Now solve the equation D=\frac{0±20\sqrt{17}}{10} when ± is minus.
D=2\sqrt{17} D=-2\sqrt{17}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}