Solve for x
x=\frac{17-y}{2}
y\neq 5
Solve for y
y=17-2x
x\neq 6
Graph
Share
Copied to clipboard
5-y=-2\left(-x+6\right)
Variable x cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by -x+6.
5-y=2x-12
Use the distributive property to multiply -2 by -x+6.
2x-12=5-y
Swap sides so that all variable terms are on the left hand side.
2x=5-y+12
Add 12 to both sides.
2x=17-y
Add 5 and 12 to get 17.
\frac{2x}{2}=\frac{17-y}{2}
Divide both sides by 2.
x=\frac{17-y}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{17-y}{2}\text{, }x\neq 6
Variable x cannot be equal to 6.
5-y=-2\left(-x+6\right)
Multiply both sides of the equation by -x+6.
5-y=2x-12
Use the distributive property to multiply -2 by -x+6.
-y=2x-12-5
Subtract 5 from both sides.
-y=2x-17
Subtract 5 from -12 to get -17.
\frac{-y}{-1}=\frac{2x-17}{-1}
Divide both sides by -1.
y=\frac{2x-17}{-1}
Dividing by -1 undoes the multiplication by -1.
y=17-2x
Divide 2x-17 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}