Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5-x}{\left(x-1\right)\left(x+3\right)}+\frac{3x+5}{\left(x+1\right)\left(x+3\right)}
Factor x^{2}+2x-3. Factor x^{2}+4x+3.
\frac{\left(5-x\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{\left(3x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+3\right) and \left(x+1\right)\left(x+3\right) is \left(x-1\right)\left(x+1\right)\left(x+3\right). Multiply \frac{5-x}{\left(x-1\right)\left(x+3\right)} times \frac{x+1}{x+1}. Multiply \frac{3x+5}{\left(x+1\right)\left(x+3\right)} times \frac{x-1}{x-1}.
\frac{\left(5-x\right)\left(x+1\right)+\left(3x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(5-x\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} and \frac{\left(3x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{5x+5-x^{2}-x+3x^{2}-3x+5x-5}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(5-x\right)\left(x+1\right)+\left(3x+5\right)\left(x-1\right).
\frac{6x+2x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in 5x+5-x^{2}-x+3x^{2}-3x+5x-5.
\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{6x+2x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}.
\frac{2x}{\left(x-1\right)\left(x+1\right)}
Cancel out x+3 in both numerator and denominator.
\frac{2x}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).
\frac{5-x}{\left(x-1\right)\left(x+3\right)}+\frac{3x+5}{\left(x+1\right)\left(x+3\right)}
Factor x^{2}+2x-3. Factor x^{2}+4x+3.
\frac{\left(5-x\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}+\frac{\left(3x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+3\right) and \left(x+1\right)\left(x+3\right) is \left(x-1\right)\left(x+1\right)\left(x+3\right). Multiply \frac{5-x}{\left(x-1\right)\left(x+3\right)} times \frac{x+1}{x+1}. Multiply \frac{3x+5}{\left(x+1\right)\left(x+3\right)} times \frac{x-1}{x-1}.
\frac{\left(5-x\right)\left(x+1\right)+\left(3x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Since \frac{\left(5-x\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} and \frac{\left(3x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{5x+5-x^{2}-x+3x^{2}-3x+5x-5}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Do the multiplications in \left(5-x\right)\left(x+1\right)+\left(3x+5\right)\left(x-1\right).
\frac{6x+2x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Combine like terms in 5x+5-x^{2}-x+3x^{2}-3x+5x-5.
\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{6x+2x^{2}}{\left(x-1\right)\left(x+1\right)\left(x+3\right)}.
\frac{2x}{\left(x-1\right)\left(x+1\right)}
Cancel out x+3 in both numerator and denominator.
\frac{2x}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).