Solve for x
x = \frac{\sqrt{147456000688000001} + 384000001}{8000000} \approx 96.000000237
x=\frac{384000001-\sqrt{147456000688000001}}{8000000}\approx 0.000000013
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 5 - x } { 4 \times 10 ^ { 6 } } = 96 x - x ^ { 2 }
Share
Copied to clipboard
\frac{5-x}{4\times 1000000}=96x-x^{2}
Calculate 10 to the power of 6 and get 1000000.
\frac{5-x}{4000000}=96x-x^{2}
Multiply 4 and 1000000 to get 4000000.
\frac{1}{800000}-\frac{1}{4000000}x=96x-x^{2}
Divide each term of 5-x by 4000000 to get \frac{1}{800000}-\frac{1}{4000000}x.
\frac{1}{800000}-\frac{1}{4000000}x-96x=-x^{2}
Subtract 96x from both sides.
\frac{1}{800000}-\frac{384000001}{4000000}x=-x^{2}
Combine -\frac{1}{4000000}x and -96x to get -\frac{384000001}{4000000}x.
\frac{1}{800000}-\frac{384000001}{4000000}x+x^{2}=0
Add x^{2} to both sides.
x^{2}-\frac{384000001}{4000000}x+\frac{1}{800000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\left(-\frac{384000001}{4000000}\right)^{2}-4\times \frac{1}{800000}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{384000001}{4000000} for b, and \frac{1}{800000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\frac{147456000768000001}{16000000000000}-4\times \frac{1}{800000}}}{2}
Square -\frac{384000001}{4000000} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\frac{147456000768000001}{16000000000000}-\frac{1}{200000}}}{2}
Multiply -4 times \frac{1}{800000}.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\sqrt{\frac{147456000688000001}{16000000000000}}}{2}
Add \frac{147456000768000001}{16000000000000} to -\frac{1}{200000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{384000001}{4000000}\right)±\frac{\sqrt{147456000688000001}}{4000000}}{2}
Take the square root of \frac{147456000688000001}{16000000000000}.
x=\frac{\frac{384000001}{4000000}±\frac{\sqrt{147456000688000001}}{4000000}}{2}
The opposite of -\frac{384000001}{4000000} is \frac{384000001}{4000000}.
x=\frac{\sqrt{147456000688000001}+384000001}{2\times 4000000}
Now solve the equation x=\frac{\frac{384000001}{4000000}±\frac{\sqrt{147456000688000001}}{4000000}}{2} when ± is plus. Add \frac{384000001}{4000000} to \frac{\sqrt{147456000688000001}}{4000000}.
x=\frac{\sqrt{147456000688000001}+384000001}{8000000}
Divide \frac{384000001+\sqrt{147456000688000001}}{4000000} by 2.
x=\frac{384000001-\sqrt{147456000688000001}}{2\times 4000000}
Now solve the equation x=\frac{\frac{384000001}{4000000}±\frac{\sqrt{147456000688000001}}{4000000}}{2} when ± is minus. Subtract \frac{\sqrt{147456000688000001}}{4000000} from \frac{384000001}{4000000}.
x=\frac{384000001-\sqrt{147456000688000001}}{8000000}
Divide \frac{384000001-\sqrt{147456000688000001}}{4000000} by 2.
x=\frac{\sqrt{147456000688000001}+384000001}{8000000} x=\frac{384000001-\sqrt{147456000688000001}}{8000000}
The equation is now solved.
\frac{5-x}{4\times 1000000}=96x-x^{2}
Calculate 10 to the power of 6 and get 1000000.
\frac{5-x}{4000000}=96x-x^{2}
Multiply 4 and 1000000 to get 4000000.
\frac{1}{800000}-\frac{1}{4000000}x=96x-x^{2}
Divide each term of 5-x by 4000000 to get \frac{1}{800000}-\frac{1}{4000000}x.
\frac{1}{800000}-\frac{1}{4000000}x-96x=-x^{2}
Subtract 96x from both sides.
\frac{1}{800000}-\frac{384000001}{4000000}x=-x^{2}
Combine -\frac{1}{4000000}x and -96x to get -\frac{384000001}{4000000}x.
\frac{1}{800000}-\frac{384000001}{4000000}x+x^{2}=0
Add x^{2} to both sides.
-\frac{384000001}{4000000}x+x^{2}=-\frac{1}{800000}
Subtract \frac{1}{800000} from both sides. Anything subtracted from zero gives its negation.
x^{2}-\frac{384000001}{4000000}x=-\frac{1}{800000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{384000001}{4000000}x+\left(-\frac{384000001}{8000000}\right)^{2}=-\frac{1}{800000}+\left(-\frac{384000001}{8000000}\right)^{2}
Divide -\frac{384000001}{4000000}, the coefficient of the x term, by 2 to get -\frac{384000001}{8000000}. Then add the square of -\frac{384000001}{8000000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{384000001}{4000000}x+\frac{147456000768000001}{64000000000000}=-\frac{1}{800000}+\frac{147456000768000001}{64000000000000}
Square -\frac{384000001}{8000000} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{384000001}{4000000}x+\frac{147456000768000001}{64000000000000}=\frac{147456000688000001}{64000000000000}
Add -\frac{1}{800000} to \frac{147456000768000001}{64000000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{384000001}{8000000}\right)^{2}=\frac{147456000688000001}{64000000000000}
Factor x^{2}-\frac{384000001}{4000000}x+\frac{147456000768000001}{64000000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{384000001}{8000000}\right)^{2}}=\sqrt{\frac{147456000688000001}{64000000000000}}
Take the square root of both sides of the equation.
x-\frac{384000001}{8000000}=\frac{\sqrt{147456000688000001}}{8000000} x-\frac{384000001}{8000000}=-\frac{\sqrt{147456000688000001}}{8000000}
Simplify.
x=\frac{\sqrt{147456000688000001}+384000001}{8000000} x=\frac{384000001-\sqrt{147456000688000001}}{8000000}
Add \frac{384000001}{8000000} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}