Solve for x
x = -\frac{16}{5} = -3\frac{1}{5} = -3.2
Graph
Share
Copied to clipboard
2\left(5-x\right)-12\left(\frac{x+5}{2}+1\right)=x-2-4\left(\frac{7}{2}+x\right)
Multiply both sides of the equation by 4, the least common multiple of 2,4.
10-2x-12\left(\frac{x+5}{2}+1\right)=x-2-4\left(\frac{7}{2}+x\right)
Use the distributive property to multiply 2 by 5-x.
10-2x-12\left(\frac{x+5}{2}+1\right)=x-2-4\times \frac{7}{2}-4x
Use the distributive property to multiply -4 by \frac{7}{2}+x.
10-2x-12\left(\frac{x+5}{2}+1\right)=x-2+\frac{-4\times 7}{2}-4x
Express -4\times \frac{7}{2} as a single fraction.
10-2x-12\left(\frac{x+5}{2}+1\right)=x-2+\frac{-28}{2}-4x
Multiply -4 and 7 to get -28.
10-2x-12\left(\frac{x+5}{2}+1\right)=x-2-14-4x
Divide -28 by 2 to get -14.
10-2x-12\left(\frac{x+5}{2}+1\right)=x-16-4x
Subtract 14 from -2 to get -16.
10-2x-12\left(\frac{x+5}{2}+1\right)=-3x-16
Combine x and -4x to get -3x.
10-2x-12\left(\frac{1}{2}x+\frac{5}{2}+1\right)=-3x-16
Divide each term of x+5 by 2 to get \frac{1}{2}x+\frac{5}{2}.
10-2x-12\left(\frac{1}{2}x+\frac{5}{2}+\frac{2}{2}\right)=-3x-16
Convert 1 to fraction \frac{2}{2}.
10-2x-12\left(\frac{1}{2}x+\frac{5+2}{2}\right)=-3x-16
Since \frac{5}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
10-2x-12\left(\frac{1}{2}x+\frac{7}{2}\right)=-3x-16
Add 5 and 2 to get 7.
10-2x-12\times \frac{1}{2}x-12\times \frac{7}{2}=-3x-16
Use the distributive property to multiply -12 by \frac{1}{2}x+\frac{7}{2}.
10-2x+\frac{-12}{2}x-12\times \frac{7}{2}=-3x-16
Multiply -12 and \frac{1}{2} to get \frac{-12}{2}.
10-2x-6x-12\times \frac{7}{2}=-3x-16
Divide -12 by 2 to get -6.
10-2x-6x+\frac{-12\times 7}{2}=-3x-16
Express -12\times \frac{7}{2} as a single fraction.
10-2x-6x+\frac{-84}{2}=-3x-16
Multiply -12 and 7 to get -84.
10-2x-6x-42=-3x-16
Divide -84 by 2 to get -42.
10-8x-42=-3x-16
Combine -2x and -6x to get -8x.
-32-8x=-3x-16
Subtract 42 from 10 to get -32.
-32-8x+3x=-16
Add 3x to both sides.
-32-5x=-16
Combine -8x and 3x to get -5x.
-5x=-16+32
Add 32 to both sides.
-5x=16
Add -16 and 32 to get 16.
x=\frac{16}{-5}
Divide both sides by -5.
x=-\frac{16}{5}
Fraction \frac{16}{-5} can be rewritten as -\frac{16}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}