Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-i\right)\left(7-2i\right)}{\left(7+2i\right)\left(7-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-2i.
\frac{\left(5-i\right)\left(7-2i\right)}{7^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-i\right)\left(7-2i\right)}{53}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 7+5\times \left(-2i\right)-i\times 7-\left(-2i^{2}\right)}{53}
Multiply complex numbers 5-i and 7-2i like you multiply binomials.
\frac{5\times 7+5\times \left(-2i\right)-i\times 7-\left(-2\left(-1\right)\right)}{53}
By definition, i^{2} is -1.
\frac{35-10i-7i-2}{53}
Do the multiplications in 5\times 7+5\times \left(-2i\right)-i\times 7-\left(-2\left(-1\right)\right).
\frac{35-2+\left(-10-7\right)i}{53}
Combine the real and imaginary parts in 35-10i-7i-2.
\frac{33-17i}{53}
Do the additions in 35-2+\left(-10-7\right)i.
\frac{33}{53}-\frac{17}{53}i
Divide 33-17i by 53 to get \frac{33}{53}-\frac{17}{53}i.
Re(\frac{\left(5-i\right)\left(7-2i\right)}{\left(7+2i\right)\left(7-2i\right)})
Multiply both numerator and denominator of \frac{5-i}{7+2i} by the complex conjugate of the denominator, 7-2i.
Re(\frac{\left(5-i\right)\left(7-2i\right)}{7^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-i\right)\left(7-2i\right)}{53})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 7+5\times \left(-2i\right)-i\times 7-\left(-2i^{2}\right)}{53})
Multiply complex numbers 5-i and 7-2i like you multiply binomials.
Re(\frac{5\times 7+5\times \left(-2i\right)-i\times 7-\left(-2\left(-1\right)\right)}{53})
By definition, i^{2} is -1.
Re(\frac{35-10i-7i-2}{53})
Do the multiplications in 5\times 7+5\times \left(-2i\right)-i\times 7-\left(-2\left(-1\right)\right).
Re(\frac{35-2+\left(-10-7\right)i}{53})
Combine the real and imaginary parts in 35-10i-7i-2.
Re(\frac{33-17i}{53})
Do the additions in 35-2+\left(-10-7\right)i.
Re(\frac{33}{53}-\frac{17}{53}i)
Divide 33-17i by 53 to get \frac{33}{53}-\frac{17}{53}i.
\frac{33}{53}
The real part of \frac{33}{53}-\frac{17}{53}i is \frac{33}{53}.