Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{5-i}{1-\left(-1\right)}+\frac{9+5i}{3+i}
Multiply i and i to get -1.
\frac{5-i}{1+1}+\frac{9+5i}{3+i}
The opposite of -1 is 1.
\frac{5-i}{2}+\frac{9+5i}{3+i}
Add 1 and 1 to get 2.
\frac{5}{2}-\frac{1}{2}i+\frac{9+5i}{3+i}
Divide 5-i by 2 to get \frac{5}{2}-\frac{1}{2}i.
\frac{5}{2}-\frac{1}{2}i+\frac{\left(9+5i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator of \frac{9+5i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{5}{2}-\frac{1}{2}i+\frac{\left(9+5i\right)\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5}{2}-\frac{1}{2}i+\frac{\left(9+5i\right)\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5}{2}-\frac{1}{2}i+\frac{9\times 3+9\left(-i\right)+5i\times 3+5\left(-1\right)i^{2}}{10}
Multiply complex numbers 9+5i and 3-i like you multiply binomials.
\frac{5}{2}-\frac{1}{2}i+\frac{9\times 3+9\left(-i\right)+5i\times 3+5\left(-1\right)\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{5}{2}-\frac{1}{2}i+\frac{27-9i+15i+5}{10}
Do the multiplications in 9\times 3+9\left(-i\right)+5i\times 3+5\left(-1\right)\left(-1\right).
\frac{5}{2}-\frac{1}{2}i+\frac{27+5+\left(-9+15\right)i}{10}
Combine the real and imaginary parts in 27-9i+15i+5.
\frac{5}{2}-\frac{1}{2}i+\frac{32+6i}{10}
Do the additions in 27+5+\left(-9+15\right)i.
\frac{5}{2}-\frac{1}{2}i+\left(\frac{16}{5}+\frac{3}{5}i\right)
Divide 32+6i by 10 to get \frac{16}{5}+\frac{3}{5}i.
\frac{5}{2}+\frac{16}{5}+\left(-\frac{1}{2}+\frac{3}{5}\right)i
Combine the real and imaginary parts in numbers \frac{5}{2}-\frac{1}{2}i and \frac{16}{5}+\frac{3}{5}i.
\frac{57}{10}+\frac{1}{10}i
Add \frac{5}{2} to \frac{16}{5}. Add -\frac{1}{2} to \frac{3}{5}.
Re(\frac{5-i}{1-\left(-1\right)}+\frac{9+5i}{3+i})
Multiply i and i to get -1.
Re(\frac{5-i}{1+1}+\frac{9+5i}{3+i})
The opposite of -1 is 1.
Re(\frac{5-i}{2}+\frac{9+5i}{3+i})
Add 1 and 1 to get 2.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{9+5i}{3+i})
Divide 5-i by 2 to get \frac{5}{2}-\frac{1}{2}i.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{\left(9+5i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{9+5i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{\left(9+5i\right)\left(3-i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{\left(9+5i\right)\left(3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{9\times 3+9\left(-i\right)+5i\times 3+5\left(-1\right)i^{2}}{10})
Multiply complex numbers 9+5i and 3-i like you multiply binomials.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{9\times 3+9\left(-i\right)+5i\times 3+5\left(-1\right)\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{27-9i+15i+5}{10})
Do the multiplications in 9\times 3+9\left(-i\right)+5i\times 3+5\left(-1\right)\left(-1\right).
Re(\frac{5}{2}-\frac{1}{2}i+\frac{27+5+\left(-9+15\right)i}{10})
Combine the real and imaginary parts in 27-9i+15i+5.
Re(\frac{5}{2}-\frac{1}{2}i+\frac{32+6i}{10})
Do the additions in 27+5+\left(-9+15\right)i.
Re(\frac{5}{2}-\frac{1}{2}i+\left(\frac{16}{5}+\frac{3}{5}i\right))
Divide 32+6i by 10 to get \frac{16}{5}+\frac{3}{5}i.
Re(\frac{5}{2}+\frac{16}{5}+\left(-\frac{1}{2}+\frac{3}{5}\right)i)
Combine the real and imaginary parts in numbers \frac{5}{2}-\frac{1}{2}i and \frac{16}{5}+\frac{3}{5}i.
Re(\frac{57}{10}+\frac{1}{10}i)
Add \frac{5}{2} to \frac{16}{5}. Add -\frac{1}{2} to \frac{3}{5}.
\frac{57}{10}
The real part of \frac{57}{10}+\frac{1}{10}i is \frac{57}{10}.