Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(5-i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 1+5\left(-i\right)-i-\left(-i^{2}\right)}{2}
Multiply complex numbers 5-i and 1-i like you multiply binomials.
\frac{5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}
By definition, i^{2} is -1.
\frac{5-5i-i-1}{2}
Do the multiplications in 5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right).
\frac{5-1+\left(-5-1\right)i}{2}
Combine the real and imaginary parts in 5-5i-i-1.
\frac{4-6i}{2}
Do the additions in 5-1+\left(-5-1\right)i.
2-3i
Divide 4-6i by 2 to get 2-3i.
Re(\frac{\left(5-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{5-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(5-i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 1+5\left(-i\right)-i-\left(-i^{2}\right)}{2})
Multiply complex numbers 5-i and 1-i like you multiply binomials.
Re(\frac{5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right)}{2})
By definition, i^{2} is -1.
Re(\frac{5-5i-i-1}{2})
Do the multiplications in 5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right).
Re(\frac{5-1+\left(-5-1\right)i}{2})
Combine the real and imaginary parts in 5-5i-i-1.
Re(\frac{4-6i}{2})
Do the additions in 5-1+\left(-5-1\right)i.
Re(2-3i)
Divide 4-6i by 2 to get 2-3i.
2
The real part of 2-3i is 2.