Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-a^{2}\right)\left(\sqrt{5}+a\right)}{\left(\sqrt{5}-a\right)\left(\sqrt{5}+a\right)}
Rationalize the denominator of \frac{5-a^{2}}{\sqrt{5}-a} by multiplying numerator and denominator by \sqrt{5}+a.
\frac{\left(5-a^{2}\right)\left(\sqrt{5}+a\right)}{\left(\sqrt{5}\right)^{2}-a^{2}}
Consider \left(\sqrt{5}-a\right)\left(\sqrt{5}+a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-a^{2}\right)\left(\sqrt{5}+a\right)}{5-a^{2}}
The square of \sqrt{5} is 5.
a+\sqrt{5}
Cancel out -a^{2}+5 in both numerator and denominator.