Evaluate
-\frac{11}{15}-\frac{6}{5}i\approx -0.733333333-1.2i
Real Part
-\frac{11}{15} = -0.7333333333333333
Share
Copied to clipboard
\frac{\left(5-8i\right)\left(3-6i\right)}{\left(3+6i\right)\left(3-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-6i.
\frac{\left(5-8i\right)\left(3-6i\right)}{3^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-8i\right)\left(3-6i\right)}{45}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)i^{2}}{45}
Multiply complex numbers 5-8i and 3-6i like you multiply binomials.
\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right)}{45}
By definition, i^{2} is -1.
\frac{15-30i-24i-48}{45}
Do the multiplications in 5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right).
\frac{15-48+\left(-30-24\right)i}{45}
Combine the real and imaginary parts in 15-30i-24i-48.
\frac{-33-54i}{45}
Do the additions in 15-48+\left(-30-24\right)i.
-\frac{11}{15}-\frac{6}{5}i
Divide -33-54i by 45 to get -\frac{11}{15}-\frac{6}{5}i.
Re(\frac{\left(5-8i\right)\left(3-6i\right)}{\left(3+6i\right)\left(3-6i\right)})
Multiply both numerator and denominator of \frac{5-8i}{3+6i} by the complex conjugate of the denominator, 3-6i.
Re(\frac{\left(5-8i\right)\left(3-6i\right)}{3^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-8i\right)\left(3-6i\right)}{45})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)i^{2}}{45})
Multiply complex numbers 5-8i and 3-6i like you multiply binomials.
Re(\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right)}{45})
By definition, i^{2} is -1.
Re(\frac{15-30i-24i-48}{45})
Do the multiplications in 5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right).
Re(\frac{15-48+\left(-30-24\right)i}{45})
Combine the real and imaginary parts in 15-30i-24i-48.
Re(\frac{-33-54i}{45})
Do the additions in 15-48+\left(-30-24\right)i.
Re(-\frac{11}{15}-\frac{6}{5}i)
Divide -33-54i by 45 to get -\frac{11}{15}-\frac{6}{5}i.
-\frac{11}{15}
The real part of -\frac{11}{15}-\frac{6}{5}i is -\frac{11}{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}