Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-6i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+3i.
\frac{\left(5-6i\right)\left(4+3i\right)}{4^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-6i\right)\left(4+3i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 4+5\times \left(3i\right)-6i\times 4-6\times 3i^{2}}{25}
Multiply complex numbers 5-6i and 4+3i like you multiply binomials.
\frac{5\times 4+5\times \left(3i\right)-6i\times 4-6\times 3\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{20+15i-24i+18}{25}
Do the multiplications in 5\times 4+5\times \left(3i\right)-6i\times 4-6\times 3\left(-1\right).
\frac{20+18+\left(15-24\right)i}{25}
Combine the real and imaginary parts in 20+15i-24i+18.
\frac{38-9i}{25}
Do the additions in 20+18+\left(15-24\right)i.
\frac{38}{25}-\frac{9}{25}i
Divide 38-9i by 25 to get \frac{38}{25}-\frac{9}{25}i.
Re(\frac{\left(5-6i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)})
Multiply both numerator and denominator of \frac{5-6i}{4-3i} by the complex conjugate of the denominator, 4+3i.
Re(\frac{\left(5-6i\right)\left(4+3i\right)}{4^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-6i\right)\left(4+3i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 4+5\times \left(3i\right)-6i\times 4-6\times 3i^{2}}{25})
Multiply complex numbers 5-6i and 4+3i like you multiply binomials.
Re(\frac{5\times 4+5\times \left(3i\right)-6i\times 4-6\times 3\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{20+15i-24i+18}{25})
Do the multiplications in 5\times 4+5\times \left(3i\right)-6i\times 4-6\times 3\left(-1\right).
Re(\frac{20+18+\left(15-24\right)i}{25})
Combine the real and imaginary parts in 20+15i-24i+18.
Re(\frac{38-9i}{25})
Do the additions in 20+18+\left(15-24\right)i.
Re(\frac{38}{25}-\frac{9}{25}i)
Divide 38-9i by 25 to get \frac{38}{25}-\frac{9}{25}i.
\frac{38}{25}
The real part of \frac{38}{25}-\frac{9}{25}i is \frac{38}{25}.