Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-6i\right)\left(-5-10i\right)}{\left(-5+10i\right)\left(-5-10i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -5-10i.
\frac{\left(5-6i\right)\left(-5-10i\right)}{\left(-5\right)^{2}-10^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-6i\right)\left(-5-10i\right)}{125}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\left(-5\right)+5\times \left(-10i\right)-6i\left(-5\right)-6\left(-10\right)i^{2}}{125}
Multiply complex numbers 5-6i and -5-10i like you multiply binomials.
\frac{5\left(-5\right)+5\times \left(-10i\right)-6i\left(-5\right)-6\left(-10\right)\left(-1\right)}{125}
By definition, i^{2} is -1.
\frac{-25-50i+30i-60}{125}
Do the multiplications in 5\left(-5\right)+5\times \left(-10i\right)-6i\left(-5\right)-6\left(-10\right)\left(-1\right).
\frac{-25-60+\left(-50+30\right)i}{125}
Combine the real and imaginary parts in -25-50i+30i-60.
\frac{-85-20i}{125}
Do the additions in -25-60+\left(-50+30\right)i.
-\frac{17}{25}-\frac{4}{25}i
Divide -85-20i by 125 to get -\frac{17}{25}-\frac{4}{25}i.
Re(\frac{\left(5-6i\right)\left(-5-10i\right)}{\left(-5+10i\right)\left(-5-10i\right)})
Multiply both numerator and denominator of \frac{5-6i}{-5+10i} by the complex conjugate of the denominator, -5-10i.
Re(\frac{\left(5-6i\right)\left(-5-10i\right)}{\left(-5\right)^{2}-10^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-6i\right)\left(-5-10i\right)}{125})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\left(-5\right)+5\times \left(-10i\right)-6i\left(-5\right)-6\left(-10\right)i^{2}}{125})
Multiply complex numbers 5-6i and -5-10i like you multiply binomials.
Re(\frac{5\left(-5\right)+5\times \left(-10i\right)-6i\left(-5\right)-6\left(-10\right)\left(-1\right)}{125})
By definition, i^{2} is -1.
Re(\frac{-25-50i+30i-60}{125})
Do the multiplications in 5\left(-5\right)+5\times \left(-10i\right)-6i\left(-5\right)-6\left(-10\right)\left(-1\right).
Re(\frac{-25-60+\left(-50+30\right)i}{125})
Combine the real and imaginary parts in -25-50i+30i-60.
Re(\frac{-85-20i}{125})
Do the additions in -25-60+\left(-50+30\right)i.
Re(-\frac{17}{25}-\frac{4}{25}i)
Divide -85-20i by 125 to get -\frac{17}{25}-\frac{4}{25}i.
-\frac{17}{25}
The real part of -\frac{17}{25}-\frac{4}{25}i is -\frac{17}{25}.