Evaluate
\frac{83}{60}\approx 1.383333333
Factor
\frac{83}{2 ^ {2} \cdot 3 \cdot 5} = 1\frac{23}{60} = 1.3833333333333333
Share
Copied to clipboard
\frac{1-3}{-6+2-2}+\frac{2}{4}+\frac{2-27+36}{16-4+8}
Subtract 4 from 5 to get 1.
\frac{-2}{-6+2-2}+\frac{2}{4}+\frac{2-27+36}{16-4+8}
Subtract 3 from 1 to get -2.
\frac{-2}{-4-2}+\frac{2}{4}+\frac{2-27+36}{16-4+8}
Add -6 and 2 to get -4.
\frac{-2}{-6}+\frac{2}{4}+\frac{2-27+36}{16-4+8}
Subtract 2 from -4 to get -6.
\frac{1}{3}+\frac{2}{4}+\frac{2-27+36}{16-4+8}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out -2.
\frac{1}{3}+\frac{1}{2}+\frac{2-27+36}{16-4+8}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{2}{6}+\frac{3}{6}+\frac{2-27+36}{16-4+8}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{2+3}{6}+\frac{2-27+36}{16-4+8}
Since \frac{2}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}+\frac{2-27+36}{16-4+8}
Add 2 and 3 to get 5.
\frac{5}{6}+\frac{-25+36}{16-4+8}
Subtract 27 from 2 to get -25.
\frac{5}{6}+\frac{11}{16-4+8}
Add -25 and 36 to get 11.
\frac{5}{6}+\frac{11}{12+8}
Subtract 4 from 16 to get 12.
\frac{5}{6}+\frac{11}{20}
Add 12 and 8 to get 20.
\frac{50}{60}+\frac{33}{60}
Least common multiple of 6 and 20 is 60. Convert \frac{5}{6} and \frac{11}{20} to fractions with denominator 60.
\frac{50+33}{60}
Since \frac{50}{60} and \frac{33}{60} have the same denominator, add them by adding their numerators.
\frac{83}{60}
Add 50 and 33 to get 83.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}