Evaluate
-1-i
Real Part
-1
Share
Copied to clipboard
\frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\left(1-3i\right)^{2}
Multiply both numerator and denominator of \frac{5-25i}{1+2i} by the complex conjugate of the denominator, 1-2i.
\frac{-45-35i}{5}-\left(1-3i\right)^{2}
Do the multiplications in \frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
-9-7i-\left(1-3i\right)^{2}
Divide -45-35i by 5 to get -9-7i.
-9-7i-\left(-8-6i\right)
Calculate 1-3i to the power of 2 and get -8-6i.
-9-7i+\left(8+6i\right)
The opposite of -8-6i is 8+6i.
-1-i
Add -9-7i and 8+6i to get -1-i.
Re(\frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\left(1-3i\right)^{2})
Multiply both numerator and denominator of \frac{5-25i}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(\frac{-45-35i}{5}-\left(1-3i\right)^{2})
Do the multiplications in \frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
Re(-9-7i-\left(1-3i\right)^{2})
Divide -45-35i by 5 to get -9-7i.
Re(-9-7i-\left(-8-6i\right))
Calculate 1-3i to the power of 2 and get -8-6i.
Re(-9-7i+\left(8+6i\right))
The opposite of -8-6i is 8+6i.
Re(-1-i)
Add -9-7i and 8+6i to get -1-i.
-1
The real part of -1-i is -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}