Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\left(1-3i\right)^{2}
Multiply both numerator and denominator of \frac{5-25i}{1+2i} by the complex conjugate of the denominator, 1-2i.
\frac{-45-35i}{5}-\left(1-3i\right)^{2}
Do the multiplications in \frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
-9-7i-\left(1-3i\right)^{2}
Divide -45-35i by 5 to get -9-7i.
-9-7i-\left(-8-6i\right)
Calculate 1-3i to the power of 2 and get -8-6i.
-9-7i+\left(8+6i\right)
The opposite of -8-6i is 8+6i.
-1-i
Add -9-7i and 8+6i to get -1-i.
Re(\frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}-\left(1-3i\right)^{2})
Multiply both numerator and denominator of \frac{5-25i}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(\frac{-45-35i}{5}-\left(1-3i\right)^{2})
Do the multiplications in \frac{\left(5-25i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
Re(-9-7i-\left(1-3i\right)^{2})
Divide -45-35i by 5 to get -9-7i.
Re(-9-7i-\left(-8-6i\right))
Calculate 1-3i to the power of 2 and get -8-6i.
Re(-9-7i+\left(8+6i\right))
The opposite of -8-6i is 8+6i.
Re(-1-i)
Add -9-7i and 8+6i to get -1-i.
-1
The real part of -1-i is -1.