Solve for x
x\in \left(-\infty,\frac{29-\sqrt{15529}}{54}\right)\cup \left(\frac{\sqrt{15529}+29}{54},\infty\right)
Graph
Share
Copied to clipboard
4\left(5-2x\right)+48<3\left(3x-5\right)\times \frac{3x}{2}
Multiply both sides of the equation by 12, the least common multiple of 3,4,2. Since 12 is positive, the inequality direction remains the same.
20-8x+48<3\left(3x-5\right)\times \frac{3x}{2}
Use the distributive property to multiply 4 by 5-2x.
68-8x<3\left(3x-5\right)\times \frac{3x}{2}
Add 20 and 48 to get 68.
68-8x<\frac{3\times 3x}{2}\left(3x-5\right)
Express 3\times \frac{3x}{2} as a single fraction.
68-8x<3\times \frac{x\times 3^{2}}{2}x-5\times \frac{3\times 3x}{2}
Use the distributive property to multiply \frac{3\times 3x}{2} by 3x-5.
68-8x<3\times \frac{x\times 9}{2}x-5\times \frac{3\times 3x}{2}
Calculate 3 to the power of 2 and get 9.
68-8x<\frac{3x\times 9}{2}x-5\times \frac{3\times 3x}{2}
Express 3\times \frac{x\times 9}{2} as a single fraction.
68-8x<\frac{3x\times 9x}{2}-5\times \frac{3\times 3x}{2}
Express \frac{3x\times 9}{2}x as a single fraction.
68-8x<\frac{3x\times 9x}{2}-5\times \frac{9x}{2}
Multiply 3 and 3 to get 9.
68-8x<\frac{3x\times 9x}{2}+\frac{-5\times 9x}{2}
Express -5\times \frac{9x}{2} as a single fraction.
68-8x<\frac{3x\times 9x-5\times 9x}{2}
Since \frac{3x\times 9x}{2} and \frac{-5\times 9x}{2} have the same denominator, add them by adding their numerators.
68-8x<\frac{27x^{2}-45x}{2}
Do the multiplications in 3x\times 9x-5\times 9x.
68-8x<\frac{27}{2}x^{2}-\frac{45}{2}x
Divide each term of 27x^{2}-45x by 2 to get \frac{27}{2}x^{2}-\frac{45}{2}x.
68-8x-\frac{27}{2}x^{2}<-\frac{45}{2}x
Subtract \frac{27}{2}x^{2} from both sides.
68-8x-\frac{27}{2}x^{2}+\frac{45}{2}x<0
Add \frac{45}{2}x to both sides.
68+\frac{29}{2}x-\frac{27}{2}x^{2}<0
Combine -8x and \frac{45}{2}x to get \frac{29}{2}x.
-68-\frac{29}{2}x+\frac{27}{2}x^{2}>0
Multiply the inequality by -1 to make the coefficient of the highest power in 68+\frac{29}{2}x-\frac{27}{2}x^{2} positive. Since -1 is negative, the inequality direction is changed.
-68-\frac{29}{2}x+\frac{27}{2}x^{2}=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\left(-\frac{29}{2}\right)^{2}-4\times \frac{27}{2}\left(-68\right)}}{2\times \frac{27}{2}}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{27}{2} for a, -\frac{29}{2} for b, and -68 for c in the quadratic formula.
x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27}
Do the calculations.
x=\frac{\sqrt{15529}+29}{54} x=\frac{29-\sqrt{15529}}{54}
Solve the equation x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27} when ± is plus and when ± is minus.
\frac{27}{2}\left(x-\frac{\sqrt{15529}+29}{54}\right)\left(x-\frac{29-\sqrt{15529}}{54}\right)>0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{15529}+29}{54}<0 x-\frac{29-\sqrt{15529}}{54}<0
For the product to be positive, x-\frac{\sqrt{15529}+29}{54} and x-\frac{29-\sqrt{15529}}{54} have to be both negative or both positive. Consider the case when x-\frac{\sqrt{15529}+29}{54} and x-\frac{29-\sqrt{15529}}{54} are both negative.
x<\frac{29-\sqrt{15529}}{54}
The solution satisfying both inequalities is x<\frac{29-\sqrt{15529}}{54}.
x-\frac{29-\sqrt{15529}}{54}>0 x-\frac{\sqrt{15529}+29}{54}>0
Consider the case when x-\frac{\sqrt{15529}+29}{54} and x-\frac{29-\sqrt{15529}}{54} are both positive.
x>\frac{\sqrt{15529}+29}{54}
The solution satisfying both inequalities is x>\frac{\sqrt{15529}+29}{54}.
x<\frac{29-\sqrt{15529}}{54}\text{; }x>\frac{\sqrt{15529}+29}{54}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}