Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(5-2x\right)+48<3\left(3x-5\right)\times \frac{3x}{2}
Multiply both sides of the equation by 12, the least common multiple of 3,4,2. Since 12 is positive, the inequality direction remains the same.
20-8x+48<3\left(3x-5\right)\times \frac{3x}{2}
Use the distributive property to multiply 4 by 5-2x.
68-8x<3\left(3x-5\right)\times \frac{3x}{2}
Add 20 and 48 to get 68.
68-8x<\frac{3\times 3x}{2}\left(3x-5\right)
Express 3\times \frac{3x}{2} as a single fraction.
68-8x<3\times \frac{x\times 3^{2}}{2}x-5\times \frac{3\times 3x}{2}
Use the distributive property to multiply \frac{3\times 3x}{2} by 3x-5.
68-8x<3\times \frac{x\times 9}{2}x-5\times \frac{3\times 3x}{2}
Calculate 3 to the power of 2 and get 9.
68-8x<\frac{3x\times 9}{2}x-5\times \frac{3\times 3x}{2}
Express 3\times \frac{x\times 9}{2} as a single fraction.
68-8x<\frac{3x\times 9x}{2}-5\times \frac{3\times 3x}{2}
Express \frac{3x\times 9}{2}x as a single fraction.
68-8x<\frac{3x\times 9x}{2}-5\times \frac{9x}{2}
Multiply 3 and 3 to get 9.
68-8x<\frac{3x\times 9x}{2}+\frac{-5\times 9x}{2}
Express -5\times \frac{9x}{2} as a single fraction.
68-8x<\frac{3x\times 9x-5\times 9x}{2}
Since \frac{3x\times 9x}{2} and \frac{-5\times 9x}{2} have the same denominator, add them by adding their numerators.
68-8x<\frac{27x^{2}-45x}{2}
Do the multiplications in 3x\times 9x-5\times 9x.
68-8x<\frac{27}{2}x^{2}-\frac{45}{2}x
Divide each term of 27x^{2}-45x by 2 to get \frac{27}{2}x^{2}-\frac{45}{2}x.
68-8x-\frac{27}{2}x^{2}<-\frac{45}{2}x
Subtract \frac{27}{2}x^{2} from both sides.
68-8x-\frac{27}{2}x^{2}+\frac{45}{2}x<0
Add \frac{45}{2}x to both sides.
68+\frac{29}{2}x-\frac{27}{2}x^{2}<0
Combine -8x and \frac{45}{2}x to get \frac{29}{2}x.
-68-\frac{29}{2}x+\frac{27}{2}x^{2}>0
Multiply the inequality by -1 to make the coefficient of the highest power in 68+\frac{29}{2}x-\frac{27}{2}x^{2} positive. Since -1 is negative, the inequality direction is changed.
-68-\frac{29}{2}x+\frac{27}{2}x^{2}=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\left(-\frac{29}{2}\right)^{2}-4\times \frac{27}{2}\left(-68\right)}}{2\times \frac{27}{2}}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{27}{2} for a, -\frac{29}{2} for b, and -68 for c in the quadratic formula.
x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27}
Do the calculations.
x=\frac{\sqrt{15529}+29}{54} x=\frac{29-\sqrt{15529}}{54}
Solve the equation x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27} when ± is plus and when ± is minus.
\frac{27}{2}\left(x-\frac{\sqrt{15529}+29}{54}\right)\left(x-\frac{29-\sqrt{15529}}{54}\right)>0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{15529}+29}{54}<0 x-\frac{29-\sqrt{15529}}{54}<0
For the product to be positive, x-\frac{\sqrt{15529}+29}{54} and x-\frac{29-\sqrt{15529}}{54} have to be both negative or both positive. Consider the case when x-\frac{\sqrt{15529}+29}{54} and x-\frac{29-\sqrt{15529}}{54} are both negative.
x<\frac{29-\sqrt{15529}}{54}
The solution satisfying both inequalities is x<\frac{29-\sqrt{15529}}{54}.
x-\frac{29-\sqrt{15529}}{54}>0 x-\frac{\sqrt{15529}+29}{54}>0
Consider the case when x-\frac{\sqrt{15529}+29}{54} and x-\frac{29-\sqrt{15529}}{54} are both positive.
x>\frac{\sqrt{15529}+29}{54}
The solution satisfying both inequalities is x>\frac{\sqrt{15529}+29}{54}.
x<\frac{29-\sqrt{15529}}{54}\text{; }x>\frac{\sqrt{15529}+29}{54}
The final solution is the union of the obtained solutions.