Evaluate
\frac{1}{20}-\frac{3}{5}i=0.05-0.6i
Real Part
\frac{1}{20} = 0.05
Share
Copied to clipboard
\frac{\left(5-2i\right)\left(4-8i\right)}{\left(4+8i\right)\left(4-8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-8i.
\frac{\left(5-2i\right)\left(4-8i\right)}{4^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-2i\right)\left(4-8i\right)}{80}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 4+5\times \left(-8i\right)-2i\times 4-2\left(-8\right)i^{2}}{80}
Multiply complex numbers 5-2i and 4-8i like you multiply binomials.
\frac{5\times 4+5\times \left(-8i\right)-2i\times 4-2\left(-8\right)\left(-1\right)}{80}
By definition, i^{2} is -1.
\frac{20-40i-8i-16}{80}
Do the multiplications in 5\times 4+5\times \left(-8i\right)-2i\times 4-2\left(-8\right)\left(-1\right).
\frac{20-16+\left(-40-8\right)i}{80}
Combine the real and imaginary parts in 20-40i-8i-16.
\frac{4-48i}{80}
Do the additions in 20-16+\left(-40-8\right)i.
\frac{1}{20}-\frac{3}{5}i
Divide 4-48i by 80 to get \frac{1}{20}-\frac{3}{5}i.
Re(\frac{\left(5-2i\right)\left(4-8i\right)}{\left(4+8i\right)\left(4-8i\right)})
Multiply both numerator and denominator of \frac{5-2i}{4+8i} by the complex conjugate of the denominator, 4-8i.
Re(\frac{\left(5-2i\right)\left(4-8i\right)}{4^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-2i\right)\left(4-8i\right)}{80})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 4+5\times \left(-8i\right)-2i\times 4-2\left(-8\right)i^{2}}{80})
Multiply complex numbers 5-2i and 4-8i like you multiply binomials.
Re(\frac{5\times 4+5\times \left(-8i\right)-2i\times 4-2\left(-8\right)\left(-1\right)}{80})
By definition, i^{2} is -1.
Re(\frac{20-40i-8i-16}{80})
Do the multiplications in 5\times 4+5\times \left(-8i\right)-2i\times 4-2\left(-8\right)\left(-1\right).
Re(\frac{20-16+\left(-40-8\right)i}{80})
Combine the real and imaginary parts in 20-40i-8i-16.
Re(\frac{4-48i}{80})
Do the additions in 20-16+\left(-40-8\right)i.
Re(\frac{1}{20}-\frac{3}{5}i)
Divide 4-48i by 80 to get \frac{1}{20}-\frac{3}{5}i.
\frac{1}{20}
The real part of \frac{1}{20}-\frac{3}{5}i is \frac{1}{20}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}