Evaluate
\frac{\sqrt{5}-2}{3}\approx 0.078689326
Factor
\frac{\sqrt{5} - 2}{3} = 0.07868932583326327
Share
Copied to clipboard
\frac{5-2\sqrt{5}}{3\sqrt{5}}\times 1
Divide 3\sqrt{5} by 3\sqrt{5} to get 1.
\frac{\left(5-2\sqrt{5}\right)\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}\times 1
Rationalize the denominator of \frac{5-2\sqrt{5}}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(5-2\sqrt{5}\right)\sqrt{5}}{3\times 5}\times 1
The square of \sqrt{5} is 5.
\frac{\left(5-2\sqrt{5}\right)\sqrt{5}}{15}\times 1
Multiply 3 and 5 to get 15.
\frac{\left(5-2\sqrt{5}\right)\sqrt{5}}{15}
Express \frac{\left(5-2\sqrt{5}\right)\sqrt{5}}{15}\times 1 as a single fraction.
\frac{5\sqrt{5}-2\left(\sqrt{5}\right)^{2}}{15}
Use the distributive property to multiply 5-2\sqrt{5} by \sqrt{5}.
\frac{5\sqrt{5}-2\times 5}{15}
The square of \sqrt{5} is 5.
\frac{5\sqrt{5}-10}{15}
Multiply -2 and 5 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}