Evaluate
\frac{1}{25}-\frac{2}{25}i=0.04-0.08i
Real Part
\frac{1}{25} = 0.04
Share
Copied to clipboard
\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)i^{2}}
Multiply complex numbers 5+10i and 5-10i like you multiply binomials.
\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)}
By definition, i^{2} is -1.
\frac{5-10i}{25-50i+50i+100}
Do the multiplications in 5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right).
\frac{5-10i}{25+100+\left(-50+50\right)i}
Combine the real and imaginary parts in 25-50i+50i+100.
\frac{5-10i}{125}
Do the additions in 25+100+\left(-50+50\right)i.
\frac{1}{25}-\frac{2}{25}i
Divide 5-10i by 125 to get \frac{1}{25}-\frac{2}{25}i.
Re(\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)i^{2}})
Multiply complex numbers 5+10i and 5-10i like you multiply binomials.
Re(\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)})
By definition, i^{2} is -1.
Re(\frac{5-10i}{25-50i+50i+100})
Do the multiplications in 5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right).
Re(\frac{5-10i}{25+100+\left(-50+50\right)i})
Combine the real and imaginary parts in 25-50i+50i+100.
Re(\frac{5-10i}{125})
Do the additions in 25+100+\left(-50+50\right)i.
Re(\frac{1}{25}-\frac{2}{25}i)
Divide 5-10i by 125 to get \frac{1}{25}-\frac{2}{25}i.
\frac{1}{25}
The real part of \frac{1}{25}-\frac{2}{25}i is \frac{1}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}