Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)i^{2}}
Multiply complex numbers 5+10i and 5-10i like you multiply binomials.
\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)}
By definition, i^{2} is -1.
\frac{5-10i}{25-50i+50i+100}
Do the multiplications in 5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right).
\frac{5-10i}{25+100+\left(-50+50\right)i}
Combine the real and imaginary parts in 25-50i+50i+100.
\frac{5-10i}{125}
Do the additions in 25+100+\left(-50+50\right)i.
\frac{1}{25}-\frac{2}{25}i
Divide 5-10i by 125 to get \frac{1}{25}-\frac{2}{25}i.
Re(\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)i^{2}})
Multiply complex numbers 5+10i and 5-10i like you multiply binomials.
Re(\frac{5-10i}{5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right)})
By definition, i^{2} is -1.
Re(\frac{5-10i}{25-50i+50i+100})
Do the multiplications in 5\times 5+5\times \left(-10i\right)+10i\times 5+10\left(-10\right)\left(-1\right).
Re(\frac{5-10i}{25+100+\left(-50+50\right)i})
Combine the real and imaginary parts in 25-50i+50i+100.
Re(\frac{5-10i}{125})
Do the additions in 25+100+\left(-50+50\right)i.
Re(\frac{1}{25}-\frac{2}{25}i)
Divide 5-10i by 125 to get \frac{1}{25}-\frac{2}{25}i.
\frac{1}{25}
The real part of \frac{1}{25}-\frac{2}{25}i is \frac{1}{25}.