Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{4}{3-2i}
Subtract 1 from 5 to get 4.
\frac{4\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+2i.
\frac{4\left(3+2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(3+2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4\times \left(2i\right)}{13}
Multiply 4 times 3+2i.
\frac{12+8i}{13}
Do the multiplications in 4\times 3+4\times \left(2i\right).
\frac{12}{13}+\frac{8}{13}i
Divide 12+8i by 13 to get \frac{12}{13}+\frac{8}{13}i.
Re(\frac{4}{3-2i})
Subtract 1 from 5 to get 4.
Re(\frac{4\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)})
Multiply both numerator and denominator of \frac{4}{3-2i} by the complex conjugate of the denominator, 3+2i.
Re(\frac{4\left(3+2i\right)}{3^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{4\left(3+2i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4\times \left(2i\right)}{13})
Multiply 4 times 3+2i.
Re(\frac{12+8i}{13})
Do the multiplications in 4\times 3+4\times \left(2i\right).
Re(\frac{12}{13}+\frac{8}{13}i)
Divide 12+8i by 13 to get \frac{12}{13}+\frac{8}{13}i.
\frac{12}{13}
The real part of \frac{12}{13}+\frac{8}{13}i is \frac{12}{13}.