Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Rationalize the denominator of \frac{5-\sqrt{7}}{5+\sqrt{7}} by multiplying numerator and denominator by 5-\sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Consider \left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{25-7}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Square 5. Square \sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Subtract 7 from 25 to get 18.
\frac{\left(5-\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Multiply 5-\sqrt{7} and 5-\sqrt{7} to get \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+7}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
The square of \sqrt{7} is 7.
\frac{32-10\sqrt{7}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Add 25 and 7 to get 32.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
Rationalize the denominator of \frac{5+\sqrt{7}}{5-\sqrt{7}} by multiplying numerator and denominator by 5+\sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{25-7}
Square 5. Square \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{18}
Subtract 7 from 25 to get 18.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)^{2}}{18}
Multiply 5+\sqrt{7} and 5+\sqrt{7} to get \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+7}{18}
The square of \sqrt{7} is 7.
\frac{32-10\sqrt{7}}{18}+\frac{32+10\sqrt{7}}{18}
Add 25 and 7 to get 32.
\frac{32-10\sqrt{7}+32+10\sqrt{7}}{18}
Since \frac{32-10\sqrt{7}}{18} and \frac{32+10\sqrt{7}}{18} have the same denominator, add them by adding their numerators.
\frac{64}{18}
Do the calculations in 32-10\sqrt{7}+32+10\sqrt{7}.
\frac{32}{9}
Reduce the fraction \frac{64}{18} to lowest terms by extracting and canceling out 2.