Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-\sqrt{5}\right)\left(\sqrt{15}+\sqrt{3}\right)}{\left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{15}+\sqrt{3}\right)}
Rationalize the denominator of \frac{5-\sqrt{5}}{\sqrt{15}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{15}+\sqrt{3}.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{15}+\sqrt{3}\right)}{\left(\sqrt{15}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{15}-\sqrt{3}\right)\left(\sqrt{15}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{15}+\sqrt{3}\right)}{15-3}
Square \sqrt{15}. Square \sqrt{3}.
\frac{\left(5-\sqrt{5}\right)\left(\sqrt{15}+\sqrt{3}\right)}{12}
Subtract 3 from 15 to get 12.
\frac{5\sqrt{15}+5\sqrt{3}-\sqrt{5}\sqrt{15}-\sqrt{5}\sqrt{3}}{12}
Apply the distributive property by multiplying each term of 5-\sqrt{5} by each term of \sqrt{15}+\sqrt{3}.
\frac{5\sqrt{15}+5\sqrt{3}-\sqrt{5}\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{3}}{12}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{5\sqrt{15}+5\sqrt{3}-5\sqrt{3}-\sqrt{5}\sqrt{3}}{12}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{15}-\sqrt{5}\sqrt{3}}{12}
Combine 5\sqrt{3} and -5\sqrt{3} to get 0.
\frac{5\sqrt{15}-\sqrt{15}}{12}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{4\sqrt{15}}{12}
Combine 5\sqrt{15} and -\sqrt{15} to get 4\sqrt{15}.
\frac{1}{3}\sqrt{15}
Divide 4\sqrt{15} by 12 to get \frac{1}{3}\sqrt{15}.