Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{5\left(x+4\right)}{x+4}-\frac{9}{x+4}}{\frac{2x}{x+4}-8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{x+4}{x+4}.
\frac{\frac{5\left(x+4\right)-9}{x+4}}{\frac{2x}{x+4}-8}
Since \frac{5\left(x+4\right)}{x+4} and \frac{9}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x+20-9}{x+4}}{\frac{2x}{x+4}-8}
Do the multiplications in 5\left(x+4\right)-9.
\frac{\frac{5x+11}{x+4}}{\frac{2x}{x+4}-8}
Combine like terms in 5x+20-9.
\frac{\frac{5x+11}{x+4}}{\frac{2x}{x+4}-\frac{8\left(x+4\right)}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8 times \frac{x+4}{x+4}.
\frac{\frac{5x+11}{x+4}}{\frac{2x-8\left(x+4\right)}{x+4}}
Since \frac{2x}{x+4} and \frac{8\left(x+4\right)}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x+11}{x+4}}{\frac{2x-8x-32}{x+4}}
Do the multiplications in 2x-8\left(x+4\right).
\frac{\frac{5x+11}{x+4}}{\frac{-6x-32}{x+4}}
Combine like terms in 2x-8x-32.
\frac{\left(5x+11\right)\left(x+4\right)}{\left(x+4\right)\left(-6x-32\right)}
Divide \frac{5x+11}{x+4} by \frac{-6x-32}{x+4} by multiplying \frac{5x+11}{x+4} by the reciprocal of \frac{-6x-32}{x+4}.
\frac{5x+11}{-6x-32}
Cancel out x+4 in both numerator and denominator.
\frac{\frac{5\left(x+4\right)}{x+4}-\frac{9}{x+4}}{\frac{2x}{x+4}-8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{x+4}{x+4}.
\frac{\frac{5\left(x+4\right)-9}{x+4}}{\frac{2x}{x+4}-8}
Since \frac{5\left(x+4\right)}{x+4} and \frac{9}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x+20-9}{x+4}}{\frac{2x}{x+4}-8}
Do the multiplications in 5\left(x+4\right)-9.
\frac{\frac{5x+11}{x+4}}{\frac{2x}{x+4}-8}
Combine like terms in 5x+20-9.
\frac{\frac{5x+11}{x+4}}{\frac{2x}{x+4}-\frac{8\left(x+4\right)}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8 times \frac{x+4}{x+4}.
\frac{\frac{5x+11}{x+4}}{\frac{2x-8\left(x+4\right)}{x+4}}
Since \frac{2x}{x+4} and \frac{8\left(x+4\right)}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x+11}{x+4}}{\frac{2x-8x-32}{x+4}}
Do the multiplications in 2x-8\left(x+4\right).
\frac{\frac{5x+11}{x+4}}{\frac{-6x-32}{x+4}}
Combine like terms in 2x-8x-32.
\frac{\left(5x+11\right)\left(x+4\right)}{\left(x+4\right)\left(-6x-32\right)}
Divide \frac{5x+11}{x+4} by \frac{-6x-32}{x+4} by multiplying \frac{5x+11}{x+4} by the reciprocal of \frac{-6x-32}{x+4}.
\frac{5x+11}{-6x-32}
Cancel out x+4 in both numerator and denominator.