Evaluate
\frac{\left(153a-224\right)\left(a+3\right)}{60\left(a^{2}-64\right)}
Expand
\frac{153a^{2}+235a-672}{60\left(a^{2}-64\right)}
Share
Copied to clipboard
\frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)}{60\left(a+8\right)}
Factor 3\left(a^{2}-64\right).
\frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-8\right)\left(a+8\right) and 60\left(a+8\right) is 60\left(a-8\right)\left(a+8\right). Multiply \frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)} times \frac{20}{20}. Multiply \frac{53\left(a+3\right)}{60\left(a+8\right)} times \frac{a-8}{a-8}.
\frac{20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
Since \frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)} and \frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)} have the same denominator, add them by adding their numerators.
\frac{100a^{2}+500a+600+53a^{2}-424a+159a-1272}{60\left(a-8\right)\left(a+8\right)}
Do the multiplications in 20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right).
\frac{153a^{2}+235a-672}{60\left(a-8\right)\left(a+8\right)}
Combine like terms in 100a^{2}+500a+600+53a^{2}-424a+159a-1272.
\frac{153a^{2}+235a-672}{60a^{2}-3840}
Expand 60\left(a-8\right)\left(a+8\right).
\frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)}{60\left(a+8\right)}
Factor 3\left(a^{2}-64\right).
\frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-8\right)\left(a+8\right) and 60\left(a+8\right) is 60\left(a-8\right)\left(a+8\right). Multiply \frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)} times \frac{20}{20}. Multiply \frac{53\left(a+3\right)}{60\left(a+8\right)} times \frac{a-8}{a-8}.
\frac{20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
Since \frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)} and \frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)} have the same denominator, add them by adding their numerators.
\frac{100a^{2}+500a+600+53a^{2}-424a+159a-1272}{60\left(a-8\right)\left(a+8\right)}
Do the multiplications in 20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right).
\frac{153a^{2}+235a-672}{60\left(a-8\right)\left(a+8\right)}
Combine like terms in 100a^{2}+500a+600+53a^{2}-424a+159a-1272.
\frac{153a^{2}+235a-672}{60a^{2}-3840}
Expand 60\left(a-8\right)\left(a+8\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}