Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)}{60\left(a+8\right)}
Factor 3\left(a^{2}-64\right).
\frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-8\right)\left(a+8\right) and 60\left(a+8\right) is 60\left(a-8\right)\left(a+8\right). Multiply \frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)} times \frac{20}{20}. Multiply \frac{53\left(a+3\right)}{60\left(a+8\right)} times \frac{a-8}{a-8}.
\frac{20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
Since \frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)} and \frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)} have the same denominator, add them by adding their numerators.
\frac{100a^{2}+500a+600+53a^{2}-424a+159a-1272}{60\left(a-8\right)\left(a+8\right)}
Do the multiplications in 20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right).
\frac{153a^{2}+235a-672}{60\left(a-8\right)\left(a+8\right)}
Combine like terms in 100a^{2}+500a+600+53a^{2}-424a+159a-1272.
\frac{153a^{2}+235a-672}{60a^{2}-3840}
Expand 60\left(a-8\right)\left(a+8\right).
\frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)}{60\left(a+8\right)}
Factor 3\left(a^{2}-64\right).
\frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)}+\frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-8\right)\left(a+8\right) and 60\left(a+8\right) is 60\left(a-8\right)\left(a+8\right). Multiply \frac{5\left(a^{2}+5a+6\right)}{3\left(a-8\right)\left(a+8\right)} times \frac{20}{20}. Multiply \frac{53\left(a+3\right)}{60\left(a+8\right)} times \frac{a-8}{a-8}.
\frac{20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)}
Since \frac{20\times 5\left(a^{2}+5a+6\right)}{60\left(a-8\right)\left(a+8\right)} and \frac{53\left(a+3\right)\left(a-8\right)}{60\left(a-8\right)\left(a+8\right)} have the same denominator, add them by adding their numerators.
\frac{100a^{2}+500a+600+53a^{2}-424a+159a-1272}{60\left(a-8\right)\left(a+8\right)}
Do the multiplications in 20\times 5\left(a^{2}+5a+6\right)+53\left(a+3\right)\left(a-8\right).
\frac{153a^{2}+235a-672}{60\left(a-8\right)\left(a+8\right)}
Combine like terms in 100a^{2}+500a+600+53a^{2}-424a+159a-1272.
\frac{153a^{2}+235a-672}{60a^{2}-3840}
Expand 60\left(a-8\right)\left(a+8\right).