Solve for p
p=-1
Share
Copied to clipboard
2\times 5\left(3-4p\right)=7\left(7-3p\right)
Multiply both sides of the equation by 14, the least common multiple of 7,2.
10\left(3-4p\right)=7\left(7-3p\right)
Multiply 2 and 5 to get 10.
30-40p=7\left(7-3p\right)
Use the distributive property to multiply 10 by 3-4p.
30-40p=49-21p
Use the distributive property to multiply 7 by 7-3p.
30-40p+21p=49
Add 21p to both sides.
30-19p=49
Combine -40p and 21p to get -19p.
-19p=49-30
Subtract 30 from both sides.
-19p=19
Subtract 30 from 49 to get 19.
p=\frac{19}{-19}
Divide both sides by -19.
p=-1
Divide 19 by -19 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}