Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\times 8\times \frac{\sqrt{2}}{2}}{\frac{\sqrt{5}+\sqrt{2}}{4}}
Add 3 and 5 to get 8.
\frac{40\times \frac{\sqrt{2}}{2}}{\frac{\sqrt{5}+\sqrt{2}}{4}}
Multiply 5 and 8 to get 40.
\frac{20\sqrt{2}}{\frac{\sqrt{5}+\sqrt{2}}{4}}
Cancel out 2, the greatest common factor in 40 and 2.
\frac{20\sqrt{2}\times 4}{\sqrt{5}+\sqrt{2}}
Divide 20\sqrt{2} by \frac{\sqrt{5}+\sqrt{2}}{4} by multiplying 20\sqrt{2} by the reciprocal of \frac{\sqrt{5}+\sqrt{2}}{4}.
\frac{20\sqrt{2}\times 4\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}
Rationalize the denominator of \frac{20\sqrt{2}\times 4}{\sqrt{5}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{2}.
\frac{20\sqrt{2}\times 4\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20\sqrt{2}\times 4\left(\sqrt{5}-\sqrt{2}\right)}{5-2}
Square \sqrt{5}. Square \sqrt{2}.
\frac{20\sqrt{2}\times 4\left(\sqrt{5}-\sqrt{2}\right)}{3}
Subtract 2 from 5 to get 3.
\frac{80\sqrt{2}\left(\sqrt{5}-\sqrt{2}\right)}{3}
Multiply 20 and 4 to get 80.
\frac{80\sqrt{2}\sqrt{5}-80\left(\sqrt{2}\right)^{2}}{3}
Use the distributive property to multiply 80\sqrt{2} by \sqrt{5}-\sqrt{2}.
\frac{80\sqrt{10}-80\left(\sqrt{2}\right)^{2}}{3}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{80\sqrt{10}-80\times 2}{3}
The square of \sqrt{2} is 2.
\frac{80\sqrt{10}-160}{3}
Multiply -80 and 2 to get -160.