Solve for x
x = \frac{2286763164}{18125} = 126166\frac{4414}{18125} \approx 126166.243531034
Graph
Share
Copied to clipboard
5\times 1.029\times 12\times \left(38\times 12\right)^{4}=46400x\times 38\times 12
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 11136000x, the least common multiple of 384\times 29000x,240.
5.145\times 12\times \left(38\times 12\right)^{4}=46400x\times 38\times 12
Multiply 5 and 1.029 to get 5.145.
61.74\times \left(38\times 12\right)^{4}=46400x\times 38\times 12
Multiply 5.145 and 12 to get 61.74.
61.74\times 456^{4}=46400x\times 38\times 12
Multiply 38 and 12 to get 456.
61.74\times 43237380096=46400x\times 38\times 12
Calculate 456 to the power of 4 and get 43237380096.
2669475847127.04=46400x\times 38\times 12
Multiply 61.74 and 43237380096 to get 2669475847127.04.
2669475847127.04=1763200x\times 12
Multiply 46400 and 38 to get 1763200.
2669475847127.04=21158400x
Multiply 1763200 and 12 to get 21158400.
21158400x=2669475847127.04
Swap sides so that all variable terms are on the left hand side.
x=\frac{2669475847127.04}{21158400}
Divide both sides by 21158400.
x=\frac{266947584712704}{2115840000}
Expand \frac{2669475847127.04}{21158400} by multiplying both numerator and the denominator by 100.
x=\frac{2286763164}{18125}
Reduce the fraction \frac{266947584712704}{2115840000} to lowest terms by extracting and canceling out 116736.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}