Evaluate
\frac{4x^{4}-4x^{3}-x^{2}-14x-15}{3\left(2x-1\right)\left(x+1\right)}
Expand
\frac{4x^{4}-4x^{3}-x^{2}-14x-15}{3\left(2x-1\right)\left(x+1\right)}
Graph
Share
Copied to clipboard
\frac{5-10x}{\left(2x-1\right)^{2}}+x\times \frac{\left(2x+1\right)\left(x-1\right)}{3\left(x+1\right)}
Use the distributive property to multiply 5 by 1-2x.
\frac{5-10x}{\left(2x-1\right)^{2}}+x\times \frac{2x^{2}-x-1}{3\left(x+1\right)}
Use the distributive property to multiply 2x+1 by x-1 and combine like terms.
\frac{5-10x}{\left(2x-1\right)^{2}}+x\times \frac{2x^{2}-x-1}{3x+3}
Use the distributive property to multiply 3 by x+1.
\frac{5-10x}{\left(2x-1\right)^{2}}+\frac{x\left(2x^{2}-x-1\right)}{3x+3}
Express x\times \frac{2x^{2}-x-1}{3x+3} as a single fraction.
\frac{5-10x}{\left(2x-1\right)^{2}}+\frac{x\left(2x^{2}-x-1\right)}{3\left(x+1\right)}
Factor 3x+3.
\frac{\left(5-10x\right)\times 3\left(x+1\right)}{3\left(x+1\right)\left(2x-1\right)^{2}}+\frac{x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}}{3\left(x+1\right)\left(2x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-1\right)^{2} and 3\left(x+1\right) is 3\left(x+1\right)\left(2x-1\right)^{2}. Multiply \frac{5-10x}{\left(2x-1\right)^{2}} times \frac{3\left(x+1\right)}{3\left(x+1\right)}. Multiply \frac{x\left(2x^{2}-x-1\right)}{3\left(x+1\right)} times \frac{\left(2x-1\right)^{2}}{\left(2x-1\right)^{2}}.
\frac{\left(5-10x\right)\times 3\left(x+1\right)+x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}}{3\left(x+1\right)\left(2x-1\right)^{2}}
Since \frac{\left(5-10x\right)\times 3\left(x+1\right)}{3\left(x+1\right)\left(2x-1\right)^{2}} and \frac{x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}}{3\left(x+1\right)\left(2x-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{15x+15-30x^{2}-30x+8x^{5}-8x^{4}+2x^{3}-4x^{4}+4x^{3}-x^{2}-4x^{3}+4x^{2}-x}{3\left(x+1\right)\left(2x-1\right)^{2}}
Do the multiplications in \left(5-10x\right)\times 3\left(x+1\right)+x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}.
\frac{-16x+15-27x^{2}+8x^{5}-12x^{4}+2x^{3}}{3\left(x+1\right)\left(2x-1\right)^{2}}
Combine like terms in 15x+15-30x^{2}-30x+8x^{5}-8x^{4}+2x^{3}-4x^{4}+4x^{3}-x^{2}-4x^{3}+4x^{2}-x.
\frac{\left(2x-1\right)\left(4x^{4}-4x^{3}-x^{2}-14x-15\right)}{3\left(x+1\right)\left(2x-1\right)^{2}}
Factor the expressions that are not already factored in \frac{-16x+15-27x^{2}+8x^{5}-12x^{4}+2x^{3}}{3\left(x+1\right)\left(2x-1\right)^{2}}.
\frac{4x^{4}-4x^{3}-x^{2}-14x-15}{3\left(2x-1\right)\left(x+1\right)}
Cancel out 2x-1 in both numerator and denominator.
\frac{4x^{4}-4x^{3}-x^{2}-14x-15}{6x^{2}+3x-3}
Expand 3\left(2x-1\right)\left(x+1\right).
\frac{5-10x}{\left(2x-1\right)^{2}}+x\times \frac{\left(2x+1\right)\left(x-1\right)}{3\left(x+1\right)}
Use the distributive property to multiply 5 by 1-2x.
\frac{5-10x}{\left(2x-1\right)^{2}}+x\times \frac{2x^{2}-x-1}{3\left(x+1\right)}
Use the distributive property to multiply 2x+1 by x-1 and combine like terms.
\frac{5-10x}{\left(2x-1\right)^{2}}+x\times \frac{2x^{2}-x-1}{3x+3}
Use the distributive property to multiply 3 by x+1.
\frac{5-10x}{\left(2x-1\right)^{2}}+\frac{x\left(2x^{2}-x-1\right)}{3x+3}
Express x\times \frac{2x^{2}-x-1}{3x+3} as a single fraction.
\frac{5-10x}{\left(2x-1\right)^{2}}+\frac{x\left(2x^{2}-x-1\right)}{3\left(x+1\right)}
Factor 3x+3.
\frac{\left(5-10x\right)\times 3\left(x+1\right)}{3\left(x+1\right)\left(2x-1\right)^{2}}+\frac{x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}}{3\left(x+1\right)\left(2x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-1\right)^{2} and 3\left(x+1\right) is 3\left(x+1\right)\left(2x-1\right)^{2}. Multiply \frac{5-10x}{\left(2x-1\right)^{2}} times \frac{3\left(x+1\right)}{3\left(x+1\right)}. Multiply \frac{x\left(2x^{2}-x-1\right)}{3\left(x+1\right)} times \frac{\left(2x-1\right)^{2}}{\left(2x-1\right)^{2}}.
\frac{\left(5-10x\right)\times 3\left(x+1\right)+x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}}{3\left(x+1\right)\left(2x-1\right)^{2}}
Since \frac{\left(5-10x\right)\times 3\left(x+1\right)}{3\left(x+1\right)\left(2x-1\right)^{2}} and \frac{x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}}{3\left(x+1\right)\left(2x-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{15x+15-30x^{2}-30x+8x^{5}-8x^{4}+2x^{3}-4x^{4}+4x^{3}-x^{2}-4x^{3}+4x^{2}-x}{3\left(x+1\right)\left(2x-1\right)^{2}}
Do the multiplications in \left(5-10x\right)\times 3\left(x+1\right)+x\left(2x^{2}-x-1\right)\left(2x-1\right)^{2}.
\frac{-16x+15-27x^{2}+8x^{5}-12x^{4}+2x^{3}}{3\left(x+1\right)\left(2x-1\right)^{2}}
Combine like terms in 15x+15-30x^{2}-30x+8x^{5}-8x^{4}+2x^{3}-4x^{4}+4x^{3}-x^{2}-4x^{3}+4x^{2}-x.
\frac{\left(2x-1\right)\left(4x^{4}-4x^{3}-x^{2}-14x-15\right)}{3\left(x+1\right)\left(2x-1\right)^{2}}
Factor the expressions that are not already factored in \frac{-16x+15-27x^{2}+8x^{5}-12x^{4}+2x^{3}}{3\left(x+1\right)\left(2x-1\right)^{2}}.
\frac{4x^{4}-4x^{3}-x^{2}-14x-15}{3\left(2x-1\right)\left(x+1\right)}
Cancel out 2x-1 in both numerator and denominator.
\frac{4x^{4}-4x^{3}-x^{2}-14x-15}{6x^{2}+3x-3}
Expand 3\left(2x-1\right)\left(x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}