Solve for x (complex solution)
x=\frac{-3\sqrt{15}i-5}{16}\approx -0.3125-0.726184377i
x=\frac{-5+3\sqrt{15}i}{16}\approx -0.3125+0.726184377i
Graph
Share
Copied to clipboard
\frac{5\left(1+x\right)\left(1-2x\right)}{50-5\left(1-x\right)}=\frac{15}{60}
Multiply 20 and \frac{5}{2} to get 50.
\frac{5\left(x+1\right)\left(-2x+1\right)}{5\left(x+9\right)}=\frac{15}{60}
Factor the expressions that are not already factored in \frac{5\left(1+x\right)\left(1-2x\right)}{50-5\left(1-x\right)}.
\frac{\left(x+1\right)\left(-2x+1\right)}{x+9}=\frac{15}{60}
Cancel out 5 in both numerator and denominator.
\frac{\left(x+1\right)\left(-2x+1\right)}{x+9}=\frac{1}{4}
Reduce the fraction \frac{15}{60} to lowest terms by extracting and canceling out 15.
\frac{-2x^{2}-x+1}{x+9}=\frac{1}{4}
Use the distributive property to multiply x+1 by -2x+1 and combine like terms.
\frac{-2x^{2}-x+1}{x+9}-\frac{1}{4}=0
Subtract \frac{1}{4} from both sides.
\frac{4\left(-2x^{2}-x+1\right)}{4\left(x+9\right)}-\frac{x+9}{4\left(x+9\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+9 and 4 is 4\left(x+9\right). Multiply \frac{-2x^{2}-x+1}{x+9} times \frac{4}{4}. Multiply \frac{1}{4} times \frac{x+9}{x+9}.
\frac{4\left(-2x^{2}-x+1\right)-\left(x+9\right)}{4\left(x+9\right)}=0
Since \frac{4\left(-2x^{2}-x+1\right)}{4\left(x+9\right)} and \frac{x+9}{4\left(x+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-8x^{2}-4x+4-x-9}{4\left(x+9\right)}=0
Do the multiplications in 4\left(-2x^{2}-x+1\right)-\left(x+9\right).
\frac{-8x^{2}-5x-5}{4\left(x+9\right)}=0
Combine like terms in -8x^{2}-4x+4-x-9.
-8x^{2}-5x-5=0
Variable x cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+9\right).
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, -5 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-8\right)\left(-5\right)}}{2\left(-8\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+32\left(-5\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-\left(-5\right)±\sqrt{25-160}}{2\left(-8\right)}
Multiply 32 times -5.
x=\frac{-\left(-5\right)±\sqrt{-135}}{2\left(-8\right)}
Add 25 to -160.
x=\frac{-\left(-5\right)±3\sqrt{15}i}{2\left(-8\right)}
Take the square root of -135.
x=\frac{5±3\sqrt{15}i}{2\left(-8\right)}
The opposite of -5 is 5.
x=\frac{5±3\sqrt{15}i}{-16}
Multiply 2 times -8.
x=\frac{5+3\sqrt{15}i}{-16}
Now solve the equation x=\frac{5±3\sqrt{15}i}{-16} when ± is plus. Add 5 to 3i\sqrt{15}.
x=\frac{-3\sqrt{15}i-5}{16}
Divide 5+3i\sqrt{15} by -16.
x=\frac{-3\sqrt{15}i+5}{-16}
Now solve the equation x=\frac{5±3\sqrt{15}i}{-16} when ± is minus. Subtract 3i\sqrt{15} from 5.
x=\frac{-5+3\sqrt{15}i}{16}
Divide 5-3i\sqrt{15} by -16.
x=\frac{-3\sqrt{15}i-5}{16} x=\frac{-5+3\sqrt{15}i}{16}
The equation is now solved.
\frac{5\left(1+x\right)\left(1-2x\right)}{50-5\left(1-x\right)}=\frac{15}{60}
Multiply 20 and \frac{5}{2} to get 50.
\frac{5\left(x+1\right)\left(-2x+1\right)}{5\left(x+9\right)}=\frac{15}{60}
Factor the expressions that are not already factored in \frac{5\left(1+x\right)\left(1-2x\right)}{50-5\left(1-x\right)}.
\frac{\left(x+1\right)\left(-2x+1\right)}{x+9}=\frac{15}{60}
Cancel out 5 in both numerator and denominator.
\frac{\left(x+1\right)\left(-2x+1\right)}{x+9}=\frac{1}{4}
Reduce the fraction \frac{15}{60} to lowest terms by extracting and canceling out 15.
\frac{-2x^{2}-x+1}{x+9}=\frac{1}{4}
Use the distributive property to multiply x+1 by -2x+1 and combine like terms.
4\left(-2x^{2}-x+1\right)=x+9
Variable x cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+9\right), the least common multiple of x+9,4.
-8x^{2}-4x+4=x+9
Use the distributive property to multiply 4 by -2x^{2}-x+1.
-8x^{2}-4x+4-x=9
Subtract x from both sides.
-8x^{2}-5x+4=9
Combine -4x and -x to get -5x.
-8x^{2}-5x=9-4
Subtract 4 from both sides.
-8x^{2}-5x=5
Subtract 4 from 9 to get 5.
\frac{-8x^{2}-5x}{-8}=\frac{5}{-8}
Divide both sides by -8.
x^{2}+\left(-\frac{5}{-8}\right)x=\frac{5}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}+\frac{5}{8}x=\frac{5}{-8}
Divide -5 by -8.
x^{2}+\frac{5}{8}x=-\frac{5}{8}
Divide 5 by -8.
x^{2}+\frac{5}{8}x+\left(\frac{5}{16}\right)^{2}=-\frac{5}{8}+\left(\frac{5}{16}\right)^{2}
Divide \frac{5}{8}, the coefficient of the x term, by 2 to get \frac{5}{16}. Then add the square of \frac{5}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{8}x+\frac{25}{256}=-\frac{5}{8}+\frac{25}{256}
Square \frac{5}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{8}x+\frac{25}{256}=-\frac{135}{256}
Add -\frac{5}{8} to \frac{25}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{16}\right)^{2}=-\frac{135}{256}
Factor x^{2}+\frac{5}{8}x+\frac{25}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{16}\right)^{2}}=\sqrt{-\frac{135}{256}}
Take the square root of both sides of the equation.
x+\frac{5}{16}=\frac{3\sqrt{15}i}{16} x+\frac{5}{16}=-\frac{3\sqrt{15}i}{16}
Simplify.
x=\frac{-5+3\sqrt{15}i}{16} x=\frac{-3\sqrt{15}i-5}{16}
Subtract \frac{5}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}