Solve for x
x=\frac{9}{11}\approx 0.818181818
Graph
Share
Copied to clipboard
\left(3-x\right)\times 5+\left(3x-9\right)\times 2-\left(3x-3\right)\times 4=0
Variable x cannot be equal to any of the values 1,3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-3\right)\left(x-1\right), the least common multiple of x-4x+3,x-1,x-3.
15-5x+\left(3x-9\right)\times 2-\left(3x-3\right)\times 4=0
Use the distributive property to multiply 3-x by 5.
15-5x+6x-18-\left(3x-3\right)\times 4=0
Use the distributive property to multiply 3x-9 by 2.
15+x-18-\left(3x-3\right)\times 4=0
Combine -5x and 6x to get x.
-3+x-\left(3x-3\right)\times 4=0
Subtract 18 from 15 to get -3.
-3+x-\left(12x-12\right)=0
Use the distributive property to multiply 3x-3 by 4.
-3+x-12x+12=0
To find the opposite of 12x-12, find the opposite of each term.
-3-11x+12=0
Combine x and -12x to get -11x.
9-11x=0
Add -3 and 12 to get 9.
-11x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-9}{-11}
Divide both sides by -11.
x=\frac{9}{11}
Fraction \frac{-9}{-11} can be simplified to \frac{9}{11} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}