Solve for x
x=\frac{y\left(y-5\right)}{5}
y\neq 5\text{ and }y\neq 0
Solve for y (complex solution)
y=\frac{-\sqrt{20x+25}+5}{2}
y=\frac{\sqrt{20x+25}+5}{2}\text{, }x\neq 0
Solve for y
y=\frac{-\sqrt{20x+25}+5}{2}
y=\frac{\sqrt{20x+25}+5}{2}\text{, }x\geq -\frac{5}{4}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
y\times 5+x\times 5=y\times 1y
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
y\times 5+x\times 5=y^{2}\times 1
Multiply y and y to get y^{2}.
x\times 5=y^{2}\times 1-y\times 5
Subtract y\times 5 from both sides.
5x=y^{2}-5y
Reorder the terms.
\frac{5x}{5}=\frac{y\left(y-5\right)}{5}
Divide both sides by 5.
x=\frac{y\left(y-5\right)}{5}
Dividing by 5 undoes the multiplication by 5.
x=\frac{y\left(y-5\right)}{5}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}