Solve for x
x=28
Graph
Share
Copied to clipboard
\left(x+5\right)\times 5-\left(x+4\right)\times 3=\left(x-5\right)\times 3
Variable x cannot be equal to any of the values -5,-4,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+4\right)\left(x+5\right), the least common multiple of x^{2}-x-20,x^{2}-25,x^{2}+9x+20.
5x+25-\left(x+4\right)\times 3=\left(x-5\right)\times 3
Use the distributive property to multiply x+5 by 5.
5x+25-\left(3x+12\right)=\left(x-5\right)\times 3
Use the distributive property to multiply x+4 by 3.
5x+25-3x-12=\left(x-5\right)\times 3
To find the opposite of 3x+12, find the opposite of each term.
2x+25-12=\left(x-5\right)\times 3
Combine 5x and -3x to get 2x.
2x+13=\left(x-5\right)\times 3
Subtract 12 from 25 to get 13.
2x+13=3x-15
Use the distributive property to multiply x-5 by 3.
2x+13-3x=-15
Subtract 3x from both sides.
-x+13=-15
Combine 2x and -3x to get -x.
-x=-15-13
Subtract 13 from both sides.
-x=-28
Subtract 13 from -15 to get -28.
x=28
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}