\frac { 5 } { x ^ { 2 } - 7 x + 12 } = \frac { 2 } { x - 3 } + \frac { 5 } { x - 4 } \quad \text { LCD } =
Solve for C (complex solution)
\left\{\begin{matrix}C=-\frac{13-2x}{5DL\left(3-x\right)}\text{, }&x\neq 3\text{ and }D\neq 0\text{ and }L\neq 0\text{ and }x\neq 4\\C\in \mathrm{C}\text{, }&\left(L=0\text{ or }D=0\right)\text{ and }x=\frac{13}{2}\end{matrix}\right.
Solve for D (complex solution)
\left\{\begin{matrix}D=-\frac{13-2x}{5CL\left(3-x\right)}\text{, }&x\neq 3\text{ and }C\neq 0\text{ and }L\neq 0\text{ and }x\neq 4\\D\in \mathrm{C}\text{, }&\left(L=0\text{ or }C=0\right)\text{ and }x=\frac{13}{2}\end{matrix}\right.
Solve for C
\left\{\begin{matrix}C=-\frac{13-2x}{5DL\left(3-x\right)}\text{, }&x\neq 3\text{ and }D\neq 0\text{ and }L\neq 0\text{ and }x\neq 4\\C\in \mathrm{R}\text{, }&\left(L=0\text{ or }D=0\right)\text{ and }x=\frac{13}{2}\end{matrix}\right.
Solve for D
\left\{\begin{matrix}D=-\frac{13-2x}{5CL\left(3-x\right)}\text{, }&x\neq 3\text{ and }C\neq 0\text{ and }L\neq 0\text{ and }x\neq 4\\D\in \mathrm{R}\text{, }&\left(L=0\text{ or }C=0\right)\text{ and }x=\frac{13}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
5=\left(x-4\right)\times 2+\left(x-3\right)\times 5LCD
Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x^{2}-7x+12,x-3,x-4.
5=2x-8+\left(x-3\right)\times 5LCD
Use the distributive property to multiply x-4 by 2.
5=2x-8+\left(5x-15\right)LCD
Use the distributive property to multiply x-3 by 5.
5=2x-8+\left(5xL-15L\right)CD
Use the distributive property to multiply 5x-15 by L.
5=2x-8+\left(5xLC-15LC\right)D
Use the distributive property to multiply 5xL-15L by C.
5=2x-8+5xLCD-15LCD
Use the distributive property to multiply 5xLC-15LC by D.
2x-8+5xLCD-15LCD=5
Swap sides so that all variable terms are on the left hand side.
-8+5xLCD-15LCD=5-2x
Subtract 2x from both sides.
5xLCD-15LCD=5-2x+8
Add 8 to both sides.
5xLCD-15LCD=13-2x
Add 5 and 8 to get 13.
\left(5xLD-15LD\right)C=13-2x
Combine all terms containing C.
\left(5DLx-15DL\right)C=13-2x
The equation is in standard form.
\frac{\left(5DLx-15DL\right)C}{5DLx-15DL}=\frac{13-2x}{5DLx-15DL}
Divide both sides by 5xLD-15LD.
C=\frac{13-2x}{5DLx-15DL}
Dividing by 5xLD-15LD undoes the multiplication by 5xLD-15LD.
C=\frac{13-2x}{5DL\left(x-3\right)}
Divide 13-2x by 5xLD-15LD.
5=\left(x-4\right)\times 2+\left(x-3\right)\times 5LCD
Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x^{2}-7x+12,x-3,x-4.
5=2x-8+\left(x-3\right)\times 5LCD
Use the distributive property to multiply x-4 by 2.
5=2x-8+\left(5x-15\right)LCD
Use the distributive property to multiply x-3 by 5.
5=2x-8+\left(5xL-15L\right)CD
Use the distributive property to multiply 5x-15 by L.
5=2x-8+\left(5xLC-15LC\right)D
Use the distributive property to multiply 5xL-15L by C.
5=2x-8+5xLCD-15LCD
Use the distributive property to multiply 5xLC-15LC by D.
2x-8+5xLCD-15LCD=5
Swap sides so that all variable terms are on the left hand side.
-8+5xLCD-15LCD=5-2x
Subtract 2x from both sides.
5xLCD-15LCD=5-2x+8
Add 8 to both sides.
5xLCD-15LCD=13-2x
Add 5 and 8 to get 13.
\left(5xLC-15LC\right)D=13-2x
Combine all terms containing D.
\left(5CLx-15CL\right)D=13-2x
The equation is in standard form.
\frac{\left(5CLx-15CL\right)D}{5CLx-15CL}=\frac{13-2x}{5CLx-15CL}
Divide both sides by 5xLC-15LC.
D=\frac{13-2x}{5CLx-15CL}
Dividing by 5xLC-15LC undoes the multiplication by 5xLC-15LC.
D=\frac{13-2x}{5CL\left(x-3\right)}
Divide 13-2x by 5xLC-15LC.
5=\left(x-4\right)\times 2+\left(x-3\right)\times 5LCD
Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x^{2}-7x+12,x-3,x-4.
5=2x-8+\left(x-3\right)\times 5LCD
Use the distributive property to multiply x-4 by 2.
5=2x-8+\left(5x-15\right)LCD
Use the distributive property to multiply x-3 by 5.
5=2x-8+\left(5xL-15L\right)CD
Use the distributive property to multiply 5x-15 by L.
5=2x-8+\left(5xLC-15LC\right)D
Use the distributive property to multiply 5xL-15L by C.
5=2x-8+5xLCD-15LCD
Use the distributive property to multiply 5xLC-15LC by D.
2x-8+5xLCD-15LCD=5
Swap sides so that all variable terms are on the left hand side.
-8+5xLCD-15LCD=5-2x
Subtract 2x from both sides.
5xLCD-15LCD=5-2x+8
Add 8 to both sides.
5xLCD-15LCD=13-2x
Add 5 and 8 to get 13.
\left(5xLD-15LD\right)C=13-2x
Combine all terms containing C.
\left(5DLx-15DL\right)C=13-2x
The equation is in standard form.
\frac{\left(5DLx-15DL\right)C}{5DLx-15DL}=\frac{13-2x}{5DLx-15DL}
Divide both sides by 5xLD-15LD.
C=\frac{13-2x}{5DLx-15DL}
Dividing by 5xLD-15LD undoes the multiplication by 5xLD-15LD.
C=\frac{13-2x}{5DL\left(x-3\right)}
Divide -2x+13 by 5xLD-15LD.
5=\left(x-4\right)\times 2+\left(x-3\right)\times 5LCD
Multiply both sides of the equation by \left(x-4\right)\left(x-3\right), the least common multiple of x^{2}-7x+12,x-3,x-4.
5=2x-8+\left(x-3\right)\times 5LCD
Use the distributive property to multiply x-4 by 2.
5=2x-8+\left(5x-15\right)LCD
Use the distributive property to multiply x-3 by 5.
5=2x-8+\left(5xL-15L\right)CD
Use the distributive property to multiply 5x-15 by L.
5=2x-8+\left(5xLC-15LC\right)D
Use the distributive property to multiply 5xL-15L by C.
5=2x-8+5xLCD-15LCD
Use the distributive property to multiply 5xLC-15LC by D.
2x-8+5xLCD-15LCD=5
Swap sides so that all variable terms are on the left hand side.
-8+5xLCD-15LCD=5-2x
Subtract 2x from both sides.
5xLCD-15LCD=5-2x+8
Add 8 to both sides.
5xLCD-15LCD=13-2x
Add 5 and 8 to get 13.
\left(5xLC-15LC\right)D=13-2x
Combine all terms containing D.
\left(5CLx-15CL\right)D=13-2x
The equation is in standard form.
\frac{\left(5CLx-15CL\right)D}{5CLx-15CL}=\frac{13-2x}{5CLx-15CL}
Divide both sides by 5xLC-15LC.
D=\frac{13-2x}{5CLx-15CL}
Dividing by 5xLC-15LC undoes the multiplication by 5xLC-15LC.
D=\frac{13-2x}{5CL\left(x-3\right)}
Divide -2x+13 by 5xLC-15LC.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}