Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{\left(x-3\right)\left(x-2\right)}-\frac{4}{\left(x-3\right)^{2}}
Factor x^{2}-5x+6. Factor x^{2}-6x+9.
\frac{5\left(x-3\right)}{\left(x-2\right)\left(x-3\right)^{2}}-\frac{4\left(x-2\right)}{\left(x-2\right)\left(x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x-2\right) and \left(x-3\right)^{2} is \left(x-2\right)\left(x-3\right)^{2}. Multiply \frac{5}{\left(x-3\right)\left(x-2\right)} times \frac{x-3}{x-3}. Multiply \frac{4}{\left(x-3\right)^{2}} times \frac{x-2}{x-2}.
\frac{5\left(x-3\right)-4\left(x-2\right)}{\left(x-2\right)\left(x-3\right)^{2}}
Since \frac{5\left(x-3\right)}{\left(x-2\right)\left(x-3\right)^{2}} and \frac{4\left(x-2\right)}{\left(x-2\right)\left(x-3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5x-15-4x+8}{\left(x-2\right)\left(x-3\right)^{2}}
Do the multiplications in 5\left(x-3\right)-4\left(x-2\right).
\frac{x-7}{\left(x-2\right)\left(x-3\right)^{2}}
Combine like terms in 5x-15-4x+8.
\frac{x-7}{x^{3}-8x^{2}+21x-18}
Expand \left(x-2\right)\left(x-3\right)^{2}.