Solve for x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
x=3
Graph
Share
Copied to clipboard
5+\left(x+2\right)x=4\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-4,x-2.
5+x^{2}+2x=4\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x+2 by x.
5+x^{2}+2x=\left(4x-8\right)\left(x+2\right)
Use the distributive property to multiply 4 by x-2.
5+x^{2}+2x=4x^{2}-16
Use the distributive property to multiply 4x-8 by x+2 and combine like terms.
5+x^{2}+2x-4x^{2}=-16
Subtract 4x^{2} from both sides.
5-3x^{2}+2x=-16
Combine x^{2} and -4x^{2} to get -3x^{2}.
5-3x^{2}+2x+16=0
Add 16 to both sides.
21-3x^{2}+2x=0
Add 5 and 16 to get 21.
-3x^{2}+2x+21=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=-3\times 21=-63
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
-1,63 -3,21 -7,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -63.
-1+63=62 -3+21=18 -7+9=2
Calculate the sum for each pair.
a=9 b=-7
The solution is the pair that gives sum 2.
\left(-3x^{2}+9x\right)+\left(-7x+21\right)
Rewrite -3x^{2}+2x+21 as \left(-3x^{2}+9x\right)+\left(-7x+21\right).
3x\left(-x+3\right)+7\left(-x+3\right)
Factor out 3x in the first and 7 in the second group.
\left(-x+3\right)\left(3x+7\right)
Factor out common term -x+3 by using distributive property.
x=3 x=-\frac{7}{3}
To find equation solutions, solve -x+3=0 and 3x+7=0.
5+\left(x+2\right)x=4\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-4,x-2.
5+x^{2}+2x=4\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x+2 by x.
5+x^{2}+2x=\left(4x-8\right)\left(x+2\right)
Use the distributive property to multiply 4 by x-2.
5+x^{2}+2x=4x^{2}-16
Use the distributive property to multiply 4x-8 by x+2 and combine like terms.
5+x^{2}+2x-4x^{2}=-16
Subtract 4x^{2} from both sides.
5-3x^{2}+2x=-16
Combine x^{2} and -4x^{2} to get -3x^{2}.
5-3x^{2}+2x+16=0
Add 16 to both sides.
21-3x^{2}+2x=0
Add 5 and 16 to get 21.
-3x^{2}+2x+21=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 21}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 21}}{2\left(-3\right)}
Square 2.
x=\frac{-2±\sqrt{4+12\times 21}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-2±\sqrt{4+252}}{2\left(-3\right)}
Multiply 12 times 21.
x=\frac{-2±\sqrt{256}}{2\left(-3\right)}
Add 4 to 252.
x=\frac{-2±16}{2\left(-3\right)}
Take the square root of 256.
x=\frac{-2±16}{-6}
Multiply 2 times -3.
x=\frac{14}{-6}
Now solve the equation x=\frac{-2±16}{-6} when ± is plus. Add -2 to 16.
x=-\frac{7}{3}
Reduce the fraction \frac{14}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{18}{-6}
Now solve the equation x=\frac{-2±16}{-6} when ± is minus. Subtract 16 from -2.
x=3
Divide -18 by -6.
x=-\frac{7}{3} x=3
The equation is now solved.
5+\left(x+2\right)x=4\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-4,x-2.
5+x^{2}+2x=4\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x+2 by x.
5+x^{2}+2x=\left(4x-8\right)\left(x+2\right)
Use the distributive property to multiply 4 by x-2.
5+x^{2}+2x=4x^{2}-16
Use the distributive property to multiply 4x-8 by x+2 and combine like terms.
5+x^{2}+2x-4x^{2}=-16
Subtract 4x^{2} from both sides.
5-3x^{2}+2x=-16
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+2x=-16-5
Subtract 5 from both sides.
-3x^{2}+2x=-21
Subtract 5 from -16 to get -21.
\frac{-3x^{2}+2x}{-3}=-\frac{21}{-3}
Divide both sides by -3.
x^{2}+\frac{2}{-3}x=-\frac{21}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{2}{3}x=-\frac{21}{-3}
Divide 2 by -3.
x^{2}-\frac{2}{3}x=7
Divide -21 by -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=7+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=7+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{64}{9}
Add 7 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{8}{3} x-\frac{1}{3}=-\frac{8}{3}
Simplify.
x=3 x=-\frac{7}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}